Skip to main content
Log in

Trace-level determination of phosphonates in liquid and solid phase of wastewater and environmental samples by IC-ESI-MS/MS

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Phosphonates are increasingly used as water-softening agents in detergents, care products, and industrial processes. Despite poor biodegradability, high removal rates during wastewater treatment (WWT) have been observed, owing to strong adsorption affinity to activated sludge and mineral surfaces. Due to phosphonates representing challenging analytes, no method for the compound-specific quantification of phosphonates from solid samples has hitherto been published. In order to improve the data foundation on the environmental fate of phosphonates, an analytical method based on anion exchange chromatography and detection by electrospray ionization coupled to tandem mass spectrometry (IC-ESI-MS/MS) was developed, allowing the trace quantification of phosphonates from surface water (LOQs between 0.04 and 0.16 μg/L), wastewater (LOQs between 0.6 and 2.3 μg/L), sediment and suspended matter of rivers (LOQ < 0.1 mg/kg), and suspended matter of wastewater (LOQ < 1 mg/kg). Specificity and selectivity were enhanced by the implementation of isotope-labeled internal phosphonate standards derived through synthesis. This study describes the development of a comprehensive tool set for the determination of aminotris(methylenephosphonic acid) (ATMP), diethylenetriaminepenta(methylenephosphonic acid) (DTPMP), ethylenediaminetetra(methylenephosphonic acid) (EDTMP), 1-hydroxyethanediphosphonic acid (HEDP), and 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTC) during WWT and in the aqueous environment. In the investigated matrices, HEDP and PBTC were generally present in highest and EDTMP in lowest abundance. The phosphonate contents detected in river water were in the sub to low μg/L range, depending on the wastewater burden, whereas contents in the low to medium μg/L range were found in untreated wastewater. The loads of the solid phases exceeded the contents of the corresponding liquid phases by roughly three orders of magnitude. Current data imply that phosphonates undergo significant partitioning to the solid phase during WWT and in natural water bodies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Baeyer HV, Hofmann KA. Acetodiphosphorige Säure. Ber Dtsch Chem Ges. 1897;30(2):1973–8. https://doi.org/10.1002/cber.189703002157.

    Article  Google Scholar 

  2. Schwarzenbach G, Ackermann H, Ruckstuhl P. Komplexone XV. Neue Derivate der Imino-diessigsäure und ihre Erdalkalikomplexe. Beziehungen zwischen Acidität und Komplexbildung. Helv Chim Acta 1949; 32 (4):1175–1186; doi:https://doi.org/10.1002/hlca.19490320403.

  3. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit. Erklärung zur Reduzierung der Gewässerbelastung durch EDTA. 1991. www.iho.de/themen/selbstverpflichtungen/213-erklaerung-zur-reduzierung-der-gewaesserbelastung-durch-edta. Accessed 06/2019.

  4. Groß R, Leisewitz A, Moch K. Untersuchung der Einsatzmengen von schwer abbaubaren organischen Inhaltsstoffen in Wasch- und Reinigungsmitteln im Vergleich zum Einsatz dieser Stoffe in anderen Branchen im Hinblick auf den Nutzen einer Substitution (FB 3709 65 430). Umweltbundesamt. 2012. www.bmu.de/fileadmin/Daten_BMU/Pools/Forschungsdatenbank/fkz_3709_65_430_wasch_und_reinigungsmittel_bf.pdf. Accessed 06/2019.

  5. Nachhaltigkeit in der Wasch-, Pflege- und Reinigungsmittelbranche in Deutschland 2015–2016. Industrieverband Körperpflege- und Waschmittel e.V. 2017. www.ikw.org/fileadmin/ikw/downloads/Haushaltspflege/HP_Nachhaltigkeitsbericht__15_16.pdf. Accessed 06/2019.

  6. Rott E, Steinmetz H, Metzger JW. Organophosphonates: a review on environmental relevance, biodegradability and removal in wastewater treatment plants. Sci Total Environ. 2018;615:1176–91. https://doi.org/10.1016/j.scitotenv.2017.09.223.

    Article  CAS  PubMed  Google Scholar 

  7. Phosphonates. Human & Environmental Risk Assessment on ingredients of European household cleaning products. 2004. www.heraproject.com/files/30-F-04-%20HERA%20Phosphonates%20Full%20web%20wd.pdf. Accessed 06/2019.

  8. European Phosphonates Association. Input to the revision of the EU Ecolabels related to detergents. 2015. www.phosphonates.org/images/Images/Documents/EPA%20phosphonate%20input%20detergent%20Ecolabel.pdf. Accessed 06/2019.

  9. Gledhill WE, Feijtel TCJ. Environmental properties and safety assessment of organic phosphonates used for detergent and water treatment applications. In: Oude NT de, editor. Detergents. Springer Berlin Heidelberg: Berlin, Heidelberg. 1992. pp 261–285.

  10. Steber J. 3 - The ecotoxicity of cleaning product ingredients. In: Johansson I, Somasundaran P, editors. Handbook for cleaning/decontamination of surfaces. Elsevier Science B.V: Amsterdam. 2007. pp 721–746.

  11. Jaworska J, van Genderen-Takken H, Hanstveit A, van de Plassche E, Feijtel T. Environmental risk assessment of phosphonates, used in domestic laundry and cleaning agents in the Netherlands. Chemosphere. 2002;47(6):655–65. https://doi.org/10.1016/S0045-6535(01)00328-9.

    Article  CAS  PubMed  Google Scholar 

  12. Kononova SV, Nesmeyanova MA. Phosphonates and their degradation by microorganisms. Biochem Mosc. 2002;67(2):184–95. https://doi.org/10.1023/A:1014409929875.

    Article  CAS  Google Scholar 

  13. Schowanek D, Verstraete W. Phosphonate utilization by bacterial cultures and enrichments from environmental samples. Appl Environ Microb. 1990;56(4):895–903.

    Article  CAS  Google Scholar 

  14. Forlani G, Prearo V, Wieczorek D, Kafarski P, Lipok J. Phosphonate degradation by Spirulina strains: cyanobacterial biofilters for the removal of anticorrosive polyphosphonates from wastewater. Enzyme Microb Tech. 2011;48(3):299–305. https://doi.org/10.1016/j.enzmictec.2010.12.005.

    Article  CAS  Google Scholar 

  15. Steber J, Wierich P. Properties of hydroxyethane diphosphonate affecting its environmental fate: degradability, sludge adsorption, mobility in soils, and bioconcentration. Chemosphere. 1986;15(7):929–45. https://doi.org/10.1016/0045-6535(86)90058-5.

    Article  CAS  Google Scholar 

  16. Steber J, Wierich P. Properties of aminotris (methylenephosphonate) affecting its environmental fate: degradability, sludge adsorption, mobility in soils, and bioconcentration. Chemosphere. 1987;16(6):1323–37. https://doi.org/10.1016/0045-6535(87)90069-5.

    Article  CAS  Google Scholar 

  17. Raschke H, Rast H-G, Kleinstück R, Sicius H, Wischer D. Utilization of 2-phosphonobutane-1,2,4-tricarboxylic acid as source of phosphorus by environmental bacterial isolates. Chemosphere. 1994;29(1):81–8. https://doi.org/10.1016/0045-6535(94)90092-2.

    Article  CAS  PubMed  Google Scholar 

  18. Fischer K. Distribution and elimination of HEDP in aquatic test systems. Water Res. 1993;27(3):485–93. https://doi.org/10.1016/0043-1354(93)90049-N.

    Article  CAS  Google Scholar 

  19. Lesueur C, Pfeffer M, Fuerhacker M. Photodegradation of phosphonates in water. Chemosphere. 2005;59(5):685–91. https://doi.org/10.1016/j.chemosphere.2004.10.049.

    Article  CAS  PubMed  Google Scholar 

  20. Matthus E, de Oude NT, Bolte M, Lemaire J. Photodegradation of ferric ethylenediaminetetra(methylenephosphonic acid) (EDTMP) in aqueous solution. Water Res. 1989;23(7):845–51. https://doi.org/10.1016/0043-1354(89)90008-0.

    Article  Google Scholar 

  21. Nowack B. Determination of phosphonic acid breakdown products by high-performance liquid chromatography after derivatization. J Chromatogr A. 2002;942(1–2):185–90. https://doi.org/10.1016/S0021-9673(01)01374-7.

    Article  CAS  PubMed  Google Scholar 

  22. Nowack B, Stone AT. Degradation of nitrilotris(methylenephosphonic acid) and related (amino)phosphonate chelating agents in the presence of manganese and molecular oxygen. Environ Sci Technol. 2000;34(22):4759–65. https://doi.org/10.1021/es0000908.

  23. Xyla AG, Mikroyannidis J, Koutsoukos PG. The inhibition of calcium carbonate precipitation in aqueous media by organophosphorus compounds. J Colloid Interf Sci. 1992;153(2):537–51. https://doi.org/10.1016/0021-9797(92)90344-L.

    Article  CAS  Google Scholar 

  24. Fischer K. Sorption of chelating agents (HEDP and NTA) onto mineral phases and sediments in aquatic model systems. Chemosphere. 1991;22(1–2):15–27. https://doi.org/10.1016/0045-6535(91)90260-K.

    Article  CAS  Google Scholar 

  25. Morillo E, Undabeytia T, Maqueda C. Adsorption of glyphosate on the clay mineral montmorillonite: effect of Cu(II) in solution and adsorbed on the mineral. Environ Sci Technol. 1997;31(12):3588–92. https://doi.org/10.1021/es970341l.

    Article  CAS  Google Scholar 

  26. Liu, Gao, Yu, Guo. Adsorption of PBTCA on alumina surfaces and its influence on the fractal characteristics of sediments. J Colloid Interf Sci. 2000; 227 (1):164–170; doi:https://doi.org/10.1006/jcis.2000.6848.

  27. Zenobi MC, Rueda EH. Ternary surface complex: coadsorption of Cu(II), Zn(II), Cd(II) and nitrilotris(methylenephosphonic) acid onto boehmite. Quím Nova. 2012;35(3):505–9. https://doi.org/10.1590/S0100-40422012000300012.

    Article  CAS  Google Scholar 

  28. Day GM, Hart BT, McKelvie ID, Beckett R. Influence of natural organic matter on the sorption of biocides onto goethite. II Glyphosate Environ Technol. 1997;18(8):781–94. https://doi.org/10.1080/09593331808616597.

    Article  CAS  Google Scholar 

  29. Nowack S. Adsorption of phosphonates onto the goethite-water Interface. J Colloid Interf Sci. 1999;214(1):20–30. https://doi.org/10.1006/jcis.1999.6111.

    Article  CAS  Google Scholar 

  30. Nowack B, Stone AT. The influence of metal ions on the adsorption of phosphonates onto goethite. Environ Sci Technol. 1999;33(20):3627–33. https://doi.org/10.1021/es9900860.

    Article  CAS  Google Scholar 

  31. Nowack B. Aminopolyphosphonate removal during wastewater treatment. Water Res. 2002;36(18):4636–42. https://doi.org/10.1016/S0043-1354(02)00196-3.

    Article  CAS  PubMed  Google Scholar 

  32. Jung A, Bisaz S, Fleisch H. The binding of pyrophosphate and two diphosphonates by hydroxyapatite crystals. Calc Tiss Res. 1973;11(4):269–80. https://doi.org/10.1007/BF02547227.

    Article  CAS  Google Scholar 

  33. Chirby D, Franck S, Troutner DE. Adsorption of 153Sm-EDTMP on calcium hydroxyapatite. Appl Radiat Isotopes. 1988;39(6):495–9. https://doi.org/10.1016/0883-2889(88)90196-7.

    Article  CAS  Google Scholar 

  34. Black SN, Bromley LA, Cottier D, Davey RJ, Dobbs B, Rout JE. Interactions at the organic/inorganic interface: binding motifs for phosphonates at the surface of barite crystals. J Chem Soc Faraday T. 1991;87(20):3409–14. https://doi.org/10.1039/FT9918703409.

    Article  CAS  Google Scholar 

  35. Rott E, Nouri M, Meyer C, Minke R, Schneider M, Mandel K, et al. Removal of phosphonates from synthetic and industrial wastewater with reusable magnetic adsorbent particles. Water Res. 2018;145:608–17. https://doi.org/10.1016/j.watres.2018.08.067.

    Article  CAS  PubMed  Google Scholar 

  36. Frigge E, Jackwerth E. Preconcentration and determination of organophosphonic acids: application to natural waters. Anal Chim Acta. 1991;254(1–2):65–73. https://doi.org/10.1016/0003-2670(91)90010-3.

    Article  CAS  Google Scholar 

  37. Fischer K. Sorption of chelating agents (HEDP and NTA) onto mineral phases and sediments in aquatic model systems. Chemosphere. 1992;24(1):51–62. https://doi.org/10.1016/0045-6535(92)90566-A.

    Article  CAS  Google Scholar 

  38. Cade-Menun BJ, Liu CW, Nunlist R, McColl JG. Soil and litter phosphorus-31 nuclear magnetic resonance spectroscopy. J Environ Qual. 2002;31(2):457–65. https://doi.org/10.2134/jeq2002.4570.

    Article  CAS  PubMed  Google Scholar 

  39. Nowack B. The behavior of phosphonates in wastewater treatment plants of Switzerland. Water Res. 1998;32(4):1271–9. https://doi.org/10.1016/S0043-1354(97)00338-2.

    Article  CAS  Google Scholar 

  40. Nowack B. Determination of phosphonates in natural waters by ion-pair high-performance liquid chromatography. J Chromatogr A. 1997;773(1–2):139–46. https://doi.org/10.1016/S0021-9673(97)00202-1.

    Article  CAS  PubMed  Google Scholar 

  41. Schmidt CK, Brauch H-J. Analysis of aminopolycarboxylates and organophosphonates. In: Nowack B, JM VB, editors. Biogeochemistry of chelating agents, vol. 910. Washington, DC: American Chemical Society; 2005. p. 76–107.

    Chapter  Google Scholar 

  42. Bernabé-Zafón V, Micó-Tormos A, Simó-Alfonso EF, Ramis-Ramos G. Rapid characterization of alkylpolyphosphonates by CZE with indirect photometric and mass spectrometric detection. Electrophoresis. 2007;28(3):341–52. https://doi.org/10.1002/elps.200600311.

    Article  CAS  PubMed  Google Scholar 

  43. Schmidt CK, Raue B, Brauch H-J, Sacher F. Trace-level analysis of phosphonates in environmental waters by ion chromatography and inductively coupled plasma mass spectrometry. Int J Environ An Ch. 2013;94(4):385–98. https://doi.org/10.1080/03067319.2013.831410.

    Article  CAS  Google Scholar 

  44. Armbruster D, Müller U, Happel O. Characterization of phosphonate-based antiscalants used in drinking water treatment plants by anion-exchange chromatography coupled to electrospray ionization time-of-flight mass spectrometry and inductively coupled plasma mass spectrometry. J Chromatogr A. 1601;2019:189–204. https://doi.org/10.1016/j.chroma.2019.05.014.

    Article  CAS  Google Scholar 

  45. Wang S, Sun S, Shan C, Pan B. Analysis of trace phosphonates in authentic water samples by pre-methylation and LC-Orbitrap MS/MS. Water Res. 2019;161:78–88. https://doi.org/10.1016/j.watres.2019.05.099.

    Article  CAS  PubMed  Google Scholar 

  46. Nowack B. Environmental chemistry of phosphonates. Water Res. 2003;37(11):2533–46. https://doi.org/10.1016/S0043-1354(03)00079-4.

    Article  CAS  PubMed  Google Scholar 

  47. Felber H, Hegetschweiler K, Müller M, Odermatt R, Wampfler B. Quantitative Bestimmung von Phosphonaten in Waschmitteln. Chimia. 1995;49(6):179–81.

    CAS  Google Scholar 

  48. Knepper T. Einträge synthetischer Komplexbildner in die Gewässer (UBA-FB 299 24 284). Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit. 2002. www.umweltbundesamt.de/sites/default/files/medien/publikation/long/2066.pdf. Accessed 06/2019.

  49. Ammann AA. Determination of strong binding chelators and their metal complexes by anion-exchange chromatography and inductively coupled plasma mass spectrometry. J Chromatogr A. 2002;947(2):205–16. https://doi.org/10.1016/S0021-9673(01)01607-7.

    Article  CAS  PubMed  Google Scholar 

  50. Ammann AA. Speciation of heavy metals in environmental water by ion chromatography coupled to ICP-MS. Anal Bioanal Chem. 2002;372(3):448–52. https://doi.org/10.1007/s00216-001-1115-8.

    Article  CAS  PubMed  Google Scholar 

  51. Li CY, Gao JZ, Zhao GH, Kang JW, He HH. Determination of stability constants of Cu(II), Fe(III) and Pb(II) chelates with N,N,N′,N′-ethylenediamine tetrakis (methylenephosphonic acid) by reversed-phase ion-pair chromatography. Chromatographia. 1997; 46 (9–10):489–494; doi:https://doi.org/10.1007/BF02496366.

  52. Klinger J. Analytische Bestimmung organischer Phosphonsäuren und deren Verhalten im Prozeß der Trinkwasseraufbereitung. Diss., Tech. Univ. Dresden. 1997.

  53. Klinger J, Sacher F, Brauch H-J, Maier D. Determination of organic phosphonates in aqueous samples using liquid chromatography / particle beam mass spectrometry. Acta Hydrochim Hydrobiol. 1997;25(2):79–86.

    Article  CAS  Google Scholar 

  54. Daley-Yates PT, Gifford LA, Hoggarth CR. Assay of 1-hydroxy-3-aminopropylidene-1,1-bisphosphonate and related bisphosphonates in human urine and plasma by high-performance ion chromatography. J Chromatogr B. 1989;490:329–38. https://doi.org/10.1016/S0378-4347(00)82791-7.

    Article  CAS  Google Scholar 

  55. Liggett SJ. Determination of ethane-1-hydroxy-1,1-diphosphonic acid (EHDP) in human feces and urine. Biochem Med. 1973;7(1):68–77. https://doi.org/10.1016/0006-2944(73)90100-2.

    Article  CAS  PubMed  Google Scholar 

  56. Flesch G, Hauffe SA. Determination of the bisphosphonate pamidronate disodium in urine by pre-column derivatization with fluorescamine, high-performance liquid chromatography and fluorescence detection. J Chromatogr B. 1989;489(2):446–51. https://doi.org/10.1016/S0378-4347(00)82928-X.

    Article  CAS  Google Scholar 

  57. Liggett SJ, Libby RA. Spectrotitration of ethane-1-hydroxy-1,1-diphosphonic acid (EHDP™) with thorium diaminocyclohexanetetra-acetate. Talanta. 1970;17(11):1135–40.

    Article  CAS  Google Scholar 

  58. Wong D, Jandik P, Jones WR, Hagenaars A. Ion chromatography of polyphosphonates with direct refractive index detection. J Chromatogr A. 1987;389:279–85. https://doi.org/10.1016/S0021-9673(01)94435-8.

    Article  CAS  Google Scholar 

  59. Studnik H, Liebsch S, Forlani G, Wieczorek D, Kafarski P, Lipok J. Amino polyphosphonates - chemical features and practical uses, environmental durability and biodegradation. New Biotechnol. 2015;32(1):1–6. https://doi.org/10.1016/j.nbt.2014.06.007.

    Article  CAS  Google Scholar 

  60. Bowman RA, Moir JO. Basic Edta as an extractant for soil organic phosphorus. Soil Sci Soc Am J. 1993;57(6):1516–8. https://doi.org/10.2136/sssaj1993.03615995005700060020x.

    Article  CAS  Google Scholar 

  61. Cade-Menun BJ, Preston CM. A comparison of soil extraction procedures for 31P NMR spectroscopy. Soil Sci 1996; 161 (11):770–785. journals.lww.com/soilsci/Fulltext/1996/11000/A_COMPARISON_OF_SOIL_EXTRACTION_PROCEDURES_FOR_31P.6.aspx.

  62. Ahlgren J, Reitzel K, Danielsson R, Gogoll A, Rydin E. Biogenic phosphorus in oligotrophic mountain lake sediments: differences in composition measured with NMR spectroscopy. Water Res. 2006;40(20):3705–12. https://doi.org/10.1016/j.watres.2006.09.006.

    Article  CAS  PubMed  Google Scholar 

  63. Moedritzer K, Irani RR. The direct synthesis of α-aminomethylphosphonic acids. Mannich-type reactions with orthophosphorous acid. J Org Chem. 1966;31(5):1603–7. https://doi.org/10.1021/jo01343a067.

    Article  CAS  Google Scholar 

  64. Germscheid H-G, Schiefer J. Process for the manufacture of crystallizable phosphonic acids (US 3,551,480 A). 1970.

  65. Holzner C, Ohlendorf W, Block H-D, Bertram H, Kleinstück R, Moretto H-H. Production of 2-phosphonobutane-1,2,4-tricarboxylic acid and the alkali metal salts thereof (US 5,639,909 A). 1997.

  66. Ortega-Gadea S, Bernabé-Zafón V, Simó-Alfonso EF, Ochs C, Ramis-Ramos G. Characterization of industrial alkylpolyphosphonates by infusion electrospray ionization-ion trap mass spectrometry with identification of the impurities by tandem capillary zone electrophoresis. J Mass Spectrom. 2006;41(1):23–33. https://doi.org/10.1002/jms.940.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the German Environment Agency (UBA) for funding the project Phosphonates in washing and cleaning agents and their environmental fate - Development of analytical methods and their practical application on surface water, wastewater and sediment samples [UFOPLAN 3715654140], representing the foundation for this work. In this regard, we wish to thank Marcus Gast for support and fruitful discussions. We would further like to thank the staff of the Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA) at the University of Stuttgart for the provision of samples and Beat Schmutz (Schmutzki) for extensive assistance during sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Happel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Persistent and Mobile Organic Compounds – An Environmental Challenge with guest editors Torsten C. Schmidt, Thomas P. Knepper, and Thorsten Reemtsma.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1317 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armbruster, D., Rott, E., Minke, R. et al. Trace-level determination of phosphonates in liquid and solid phase of wastewater and environmental samples by IC-ESI-MS/MS. Anal Bioanal Chem 412, 4807–4825 (2020). https://doi.org/10.1007/s00216-019-02159-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02159-5

Keywords

Navigation