Skip to main content
Log in

A facile and label-free ratiometric optical sensor for selective detection of norepinephrine by combining second-order scattering and fluorescence signals

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work, a facile and label-free ratiometric sensor is constructed for selective determination of norepinephrine (NE) by coupling second-order scattering (SOS) and fluorescence, two different and independent optical signals. Herein, polyethyleneimine (PEI) dilute solution medium shows an intensive SOS signal without any fluorescence response. Interestingly, NE can be selectively induced by PEI to emit bright fluorescence, and meanwhile causes an observable decrease in the SOS signal due to the interactions between NE and PEI. The simultaneous variation of the two independent signals can be used for ratiometric sensing of NE. Under the optimal conditions, the resultant ratiometric sensor displays high sensitivity and selectivity toward NE by simultaneously monitoring fluorescence and SOS signals with the same excitation wavelength. The proposed sensor exhibits a good linear relationship versus NE concentration in the range of 10.0 nM–45.0 μM with a detection limit of 2.0 nM (S/N = 3) and has been successfully applied to the determination of NE in real samples without the use of any extra reagent. The combination of fluorescence and SOS signals provides a new scheme for ratiometric sensor design, greatly simplifying experimental procedure and effectively enhancing detection accuracy. Moreover, the proposed analytical strategy further broadens the application of dilute solutions of polymers in research into optical sensor and green analytical chemistry.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hettie KS, Liu X, Gillis KD, Glass TE. Selective catecholamine recognition with NeuroSensor 521: a fluorescent sensor for the visualization of norepinephrine in fixed and live cells. ACS Chem Neurosci. 2013;4:918–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen H, Sippel RS, O’dorisio MS, Vinik AI, Lloyd RV, Pacak K. The North American Neuroendocrine Tumor Society consensus guideline for the diagnosis and management of neuroendocrine tumors: pheochromocytoma, paraganglioma, and medullary thyroid cancer. Pancreas. 2010;39:775–83.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mazloum-Ardakani M, Sheikh-Mohseni MA, Abdollahi-Alibeik M, Benvidi A. Electrochemical sensor for simultaneous determination of norepinephrine, paracetamol and folic acid by a nanostructured mesoporous material. Sensors Actuators B. 2012;171:380–6.

    Article  CAS  Google Scholar 

  4. Kulma A, Szopa J. Catecholamines are active compounds in plants. Plant Sci. 2007;172:433–40.

    Article  CAS  Google Scholar 

  5. Alhendal A, Mengis S, Matthews J, Malik A. Nonhydrolytic sol-gel approach to facile creation of surface-bonded zirconia organic-inorganic hybrid coatings for sample preparation. Ι. Capillary microextraction of catecholamine neurotransmitters. J Chromatogr A. 2016;1468:23–32.

    Article  CAS  PubMed  Google Scholar 

  6. Baranwal A, Chandra P. Clinical implications and electrochemical biosensing of monoamine neurotransmitters in body fluids, in vitro, in vivo, and ex vivo models. Biosens Bioelectron. 2018;121:137–52.

    Article  CAS  PubMed  Google Scholar 

  7. He M, Wang C, Wei Y. Selective enrichment and determination of monoamine neurotransmitters by Cu (II) immobilized magnetic solid phase extraction coupled with high-performance liquid chromatography-fluorescence detection. Talanta. 2016;147:437–44.

    Article  CAS  PubMed  Google Scholar 

  8. Naccarato A, Gionfriddo E, Sindona G, Tagarelli A. Development of a simple and rapid solid phase microextraction-gas chromatography-triple quadrupole mass spectrometry method for the analysis of dopamine, serotonin and norepinephrine in human urine. Anal Chim Acta. 2014;810:17–24.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang Q, Gong M. On-line preconcentration of fluorescent derivatives of catecholamines in cerebrospinal fluid using flow-gated capillary electrophoresis. J Chromatogr A. 2016;1450:112–20.

    Article  CAS  PubMed  Google Scholar 

  10. Townsend AD, Wilken GH, Mitchell KK, Martin RS, Macarthur H. Simultaneous analysis of vascular norepinephrine and ATP release using an integrated microfluidic system. J Neurosci Methods. 2016;266:68–77.

    Article  CAS  PubMed  Google Scholar 

  11. Kruss S, Landry MP, Vander Ende E, Lima BM, Reuel NF, Zhang J, et al. Neurotransmitter detection using corona phase molecular recognition on fluorescent single-walled carbon nanotube sensors. J Am Chem Soc. 2014;136:713–24.

    Article  CAS  PubMed  Google Scholar 

  12. Jeon SJ, Kwak SY, Yim D, Ju JM, Kim JH. Chemically-modulated photoluminescence of graphene oxide for selective detection of neurotransmitter by “turn-on” response. J Am Chem Soc. 2014;136:10842–5.

    Article  CAS  PubMed  Google Scholar 

  13. Wei F, Wu Y, Xu G, Gao Y, Yang J, Liu L, et al. Molecularly imprinted polymer based on CdTe@SiO2 quantum dots as a fluorescent sensor for the recognition of norepinephrine. Analyst. 2014;139:5785–92.

    Article  CAS  PubMed  Google Scholar 

  14. Huang L, Liu M, Huang H, Wen Y, Zhang X, Wei Y. Recent advances and progress on melanin-like materials and their biomedical applications. Biomacromolecules. 2018;19:1858–68.

    Article  CAS  PubMed  Google Scholar 

  15. Nejad MAF, Ghasemi F, Hormozi-Nezhad MR. A wide-color-varying ratiometric nanoprobe for detection of norepinephrine in urine samples. Anal Chim Acta. 2018;1039:124–31.

    Article  CAS  Google Scholar 

  16. Gao ZF, Li TT, Xu XL, Liu YY, Luo HQ, Li NB. Green light-emitting polyepinephrine-based fluorescent organic dots and its application in intracellular metal ions sensing. Biosens Bioelectron. 2016;83:134–41.

    Article  CAS  PubMed  Google Scholar 

  17. Liu M, Ji J, Zhang X, Zhang X, Yang B, Deng F, et al. Self-polymerization of dopamine and polyethyleneimine: novel fluorescent organic nanoprobes for biological imaging applications. J Mater Chem B. 2015;3:3476–82.

    Article  CAS  Google Scholar 

  18. Zhao C, Zuo F, Liao Z, Qin Z, Du S, Zhao Z. Mussel-inspired one-pot synthesis of a fluorescent and water-soluble polydopamine-polyethyleneimine copolymer. Macromol Rapid Commun. 2015;36:909–15.

    Article  CAS  PubMed  Google Scholar 

  19. Tedjo W, Nejad JE, Feeny R, Yang L, Henry CS, Tobet S, et al. Electrochemical biosensor system using a CMOS microelectrode array provides high spatially and temporally resolved images. Biosens Bioelectron. 2018;114:78–88.

    Article  CAS  PubMed  Google Scholar 

  20. Hu M, Fritsch I. Redox cycling behavior of individual and binary mixtures of catecholamines at gold microband electrode arrays. Anal Chem. 2015;87:2029–32.

    Article  CAS  PubMed  Google Scholar 

  21. Bhardwaj S, Singh AK. Visual & reversible sensing of cyanide in real samples by an effective ratiometric colorimetric probe & logic gate application. J Hazard Mater. 2015;296:54–60.

    Article  CAS  PubMed  Google Scholar 

  22. Wang X, Yu J, Kang Q, Shen D, Li J, Chen L. Molecular imprinting ratiometric fluorescence sensor for highly selective and sensitive detection of phycocyanin. Biosens Bioelectron. 2016;77:624–30.

    Article  CAS  PubMed  Google Scholar 

  23. Wang H, Sun Y, Li H, Yue W, Kang Q, Shen D. A smartphone-based ratiometric resonance light scattering device for field analysis of Pb2+ in river water samples and immunoassay of alpha fetoprotein using PbS nanoparticles as signal tag. Sensors Actuators B Chem. 2018;271:358–66.

    Article  CAS  Google Scholar 

  24. Wu Y, Xiao F, Wu Z, Yu R. Novel aptasensor platform based on ratiometric surface-enhanced raman spectroscopy. Anal Chem. 2017;89:2852–8.

    Article  CAS  PubMed  Google Scholar 

  25. Liu X, Yan Z, Sun Y, Ren J, Qu X. A label-free ratiometric electrochemical DNA sensor for monitoring intracellular redox homeostasis. Chem Commun. 2017;53:6215–8.

    Article  CAS  Google Scholar 

  26. Shao K, Wang B, Nie A, Ye S, Ma J, Li Z, et al. Target-triggered signal-on ratiometric electrochemiluminescence sensing of PSA based on MOF/Au/G-quadruplex. Biosens Bioelectron. 2018;118:160–6.

    Article  CAS  PubMed  Google Scholar 

  27. Liao QG, Li YF, Huang CZ. A light scattering and fluorescence emission coupled ratiometry using the interaction of functional CdS quantum dots with aminoglycoside antibiotics as a model system. Talanta. 2007;71:567–72.

    Article  CAS  PubMed  Google Scholar 

  28. Li NB, Liu SP, Luo HQ. Frequency doubling scattering and second-order scattering technology as novel methods for the determination of the inclusion constant of procaine hydrochloride to β-cyclodextrin. Anal Chim Acta. 2002;472:89–98.

    Article  CAS  Google Scholar 

  29. Mandyla SP, Tsogas GZ, Vlessidis AG, Giokas DL. Determination of gold nanoparticles in environmental water samples by second-order optical scattering using dithiotreitol-functionalized CdS quantum dots after cloud point extraction. J Hazard Mater. 2017;323:67–74.

    Article  CAS  PubMed  Google Scholar 

  30. Liu SG, Li N, Han L, Li LJ, Li NB, Luo HQ. Size-dependent modulation of fluorescence and light scattering: a new strategy for development of ratiometric sensing. Mater Horiz. 2018;5:454–60.

    Article  CAS  Google Scholar 

  31. Li H, Zhao Y, Chen Z, Xu D. Silver enhanced ratiometric nanosensor based on two adjustable fluorescence resonance energy transfer modes for quantitative protein sensing. Biosens Bioelectron. 2017;87:428–32.

    Article  CAS  PubMed  Google Scholar 

  32. Liu J, Qian Y. A novel naphthalimide-rhodamine dye: intramolecular fluorescence resonance energy transfer and ratiometric chemodosimeter for Hg2+ and Fe3+. Dyes Pigments. 2017;136:782–90.

    Article  CAS  Google Scholar 

  33. Ma F, Wang D, Zhang Y, Li M, Qing W, Tikkanen-Kaukanen C, et al. Characterisation of the mucilage polysaccharides from Dioscorea opposita Thunb. with enzymatic hydrolysis. Food Chem. 2018;245:13–21.

    Article  CAS  PubMed  Google Scholar 

  34. Deng YN, Gao Q, Ma J, Wang C, Wei Y. Preparation of a boronate affinity material with ultrahigh binding capacity for cis-diols by grafting polymer brush from polydopamine-coated magnetized graphene oxide. Microchim Acta. 2018;185:189–96.

    Article  CAS  Google Scholar 

  35. Zhang Y, Ren W, Fan YZ, Dong JX, Zhang H, Luo HQ, et al. Label-free fluorescent discrimination and detection of epinephrine and dopamine based on bioinspired in situ copolymers and excitation wavelength switch. Anal Chim Acta. 2019;1054:167–75.

  36. Dong JX, Gao ZF, Zhang Y, Li BL, Li NB, Luo HQ. A selective and sensitive optical sensor for dissolved ammonia detection via agglomeration of fluorescent Ag nanoclusters and temperature gradient headspace single drop microextraction. Biosens Bioelectron. 2017;91:155–61.

    Article  CAS  PubMed  Google Scholar 

  37. He MJ, Chen WX, Dong XX. Polymer physics. Revised edition. Shanghai: Fudan University press; 2005.

    Google Scholar 

  38. Lv Y, Yang SJ, Du Y, Hao-Cheng Y, Xu ZK. Co-deposition kinetics of polydopamine/polyethyleneimine coatings: effects of solution composition and substrate surface. Langmuir. 2018;34:13123–31.

    Article  CAS  PubMed  Google Scholar 

  39. Kang SM, Rho J, Choi IS, Messersmith PB, Lee H. Norepinephrine: material-independent, multifunctional surface modification reagent. J Am Chem Soc. 2009;131:13224–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hong S, Kim J, Na YS, Park J, Kim S, Singha K, et al. Poly (norepinephrine): ultrasmooth material-independent surface chemistry and nanodepot for nitric oxide. Angew Chem Int Ed. 2013;52:9187–91.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (No. 21675131), the Natural Science Foundation of Chongqing (No. CSTC-2015jcyjB50001), Sichuan University of Science & Engineering (2016RCL26), the Project of Zigong City (2016XC12), the Scientific Research Fund of Sichuan Provincial Education Department (16ZB0256), the Sichuan 1000 Talents Program (No. 978), and the Undergraduate Innovation Foundation of Sichuan Province (201810622052).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Qun Luo or Nian Bing Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the Ethics Committee of Southwest University, and written informed consent was obtained from all individuals participating in the study prior to the collection of the human urine samples.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 2118 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Ren, W., Fan, Y.Z. et al. A facile and label-free ratiometric optical sensor for selective detection of norepinephrine by combining second-order scattering and fluorescence signals. Anal Bioanal Chem 411, 3081–3089 (2019). https://doi.org/10.1007/s00216-019-01762-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01762-w

Keywords

Navigation