Varki A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology. 1993;3(2):97–130.
CAS
PubMed
Article
Google Scholar
Dwek RA. Glycobiology: toward understanding the function of sugars. Chem Rev. 1996;96(2):683–720.
CAS
PubMed
Article
Google Scholar
Varki A. Nothing in glycobiology makes sense, except in the light of evolution. Cell. 2006;126(5):841–5.
CAS
PubMed
Article
Google Scholar
Myers RB, Srivastava S, Grizzle WE. Lewis Y antigen as detected by the monoclonal antibody BR96 is expressed strongly in prostatic adenocarcinoma. J Urol. 153(5):1572–4.
Werz DB, Ranzinger R, Herget S, Adibekian A, von der Lieth C-W, Seeberger PH. Exploring the structural diversity of mammalian carbohydrates (“glycospace”) by statistical databank analysis. ACS Chem Biol. 2007;2(10):685–91.
CAS
PubMed
Article
Google Scholar
Bode L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology. 2012;22(9):1147–62.
CAS
PubMed
PubMed Central
Article
Google Scholar
Schneider M, Al-Shareffi E, Haltiwanger RS. Biological functions of fucose in mammals. Glycobiology. 2017;27(7):601–18.
CAS
PubMed
PubMed Central
Article
Google Scholar
Zhang Z, Sun P, Liu J, Fu L, Yan J, Liu Y, et al. Suppression of FUT1/FUT4 expression by siRNA inhibits tumor growth. BBA Mol Cell Res. 2008;1783(2):287–96.
CAS
Google Scholar
Yin BWT, Finstad CL, Kitamura K, Federici MG, Welshinger M, Kudryashov V, et al. Serological and immunochemical analysis of Lewis Y (Ley) blood group antigen expression in epithelial ovarian cancer. Int J Cancer. 1996;65(4):406–12.
CAS
PubMed
Article
Google Scholar
Harvey DJ. Identification of protein-bound carbohydrates by mass spectrometry. Proteomics. 2001;1(2):311–28.
CAS
PubMed
Article
Google Scholar
Leymarie N, Zaia J. Effective use of mass spectrometry for glycan and glycopeptide structural analysis. Anal Chem. 2012;84(7):3040–8.
CAS
PubMed
PubMed Central
Article
Google Scholar
Sheeley DM, Reinhold VN. Structural characterization of carbohydrate sequence, linkage, and branching in a quadrupole ion trap mass spectrometer: neutral oligosaccharides and N-linked glycans. Anal Chem. 1998;70(14):3053–9.
CAS
PubMed
Article
Google Scholar
Ruhaak LR, Xu G, Li Q, Goonatilleke E, Lebrilla CB. Mass spectrometry approaches to glycomic and glycoproteomic analyses. Chem Rev. 2018;118(17):7886–930.
CAS
PubMed
Article
Google Scholar
Wuhrer M, Deelder AM, Hokke CH. Protein glycosylation analysis by liquid chromatography–mass spectrometry. J Chromatogr B. 2005;825(2):124–33.
CAS
Article
Google Scholar
Hofmann J, Hahm HS, Seeberger PH, Pagel K. Identification of carbohydrate anomers using ion mobility-mass spectrometry. Nature. 2015;526(7572):241–4.
CAS
PubMed
Article
Google Scholar
Gray CJ, Thomas B, Upton R, Migas LG, Eyers CE, Barran PE, et al. Applications of ion mobility mass spectrometry for high throughput, high resolution glycan analysis. Biochim Biophys Acta Gen Subj. 2016;1860(8):1688–709.
CAS
Article
Google Scholar
Polfer NC, Oomens J, Suhai S, Paizs B. Infrared spectroscopy and theoretical studies on gas-phase protonated leu-enkephalin and its fragments: direct experimental evidence for the mobile proton. J Am Chem Soc. 2007;129(18):5887–97.
CAS
PubMed
Article
Google Scholar
Erlekam U, Bythell BJ, Scuderi D, Van Stipdonk M, Paizs B, Maître P. Infrared spectroscopy of fragments of protonated peptides: direct evidence for macrocyclic structures of b5 ions. J Am Chem Soc. 2009;131(32):11503–8.
CAS
PubMed
Article
Google Scholar
Garcia IR, Giles K, Bateman RH, Gaskell SJ. Studies of peptide a- and b-type fragment ions using stable isotope labeling and integrated ion mobility/tandem mass spectrometry. J Am Soc Mass Spectrom. 2008;19(12):1781–7.
Article
CAS
Google Scholar
Jia C, Wu Z, Lietz CB, Liang Z, Cui Q, Li L. Gas-phase ion isomer analysis reveals the mechanism of peptide sequence scrambling. Anal Chem. 2014;86(6):2917–24.
CAS
PubMed
Article
Google Scholar
Chen X, Yu L, Steill JD, Oomens J, Polfer NC. Effect of peptide fragment size on the propensity of cyclization in collision-induced dissociation: oligoglycine b2−b8. J Am Chem Soc. 2009;131(51):18272–82.
CAS
PubMed
Article
Google Scholar
Bythell BJ, Molesworth S, Osburn S, Cooper T, Paizs B, Van Stipdonk M. Structure and reactivity of a n and a* n peptide fragments investigated using isotope labeling, tandem mass spectrometry, and density functional theory calculations. J Am Soc Mass Spectrom. 2008;19(12):1788–98.
CAS
PubMed
Article
Google Scholar
Harrison AG, Young AB, Bleiholder C, Suhai S, Paizs B. Scrambling of sequence information in collision-induced dissociation of peptides. J Am Chem Soc. 2006;128(32):10364–5.
CAS
PubMed
Article
Google Scholar
Vachet RW, Bishop BM, Erickson BW, Glish GL. Novel peptide dissociation: gas-phase intramolecular rearrangement of internal amino acid residues. J Am Chem Soc. 1997;119(24):5481–8.
CAS
Article
Google Scholar
Harrison AG. To b or not to b: the ongoing saga of peptide b ions. Mass Spectrom Rev. 2009;28(4):640–54.
CAS
PubMed
Article
Google Scholar
Goloborodko AA, Gorshkov MV, Good DM, Zubarev RA. Sequence scrambling in shotgun proteomics is negligible. J Am Soc Mass Spectrom. 2011;22(7):1121–4.
CAS
PubMed
Article
Google Scholar
Saminathan IS, Wang XS, Guo Y, Krakovska O, Voisin S, Hopkinson AC, et al. The extent and effects of peptide sequence scrambling via formation of macrocyclic b ions in model proteins. J Am Soc Mass Spectrom. 2010;21(12):2085–94.
CAS
PubMed
Article
Google Scholar
Patrick AL, Polfer NC. Peptide fragmentation products in mass spectrometry probed by infrared spectroscopy. In: Rijs AM, Oomens J, editors. Gas-phase IR spectroscopy and structure of biological molecules. Cham: Springer International Publishing; 2015. p. 153–81.
Google Scholar
Kováčik V, Hirsch J, Kováč P, Heerma W, Thomas-Oates J, Haverkamp J. Oligosaccharide characterization using collision-induced dissociation fast atom bombardment mass spectrometry: evidence for internal monosaccharide residue loss. J Mass Spectrom. 1995;30(7):949–58.
Article
Google Scholar
Harvey DJ, Mattu TS, Wormald MR, Royle L, Dwek RA, Rudd PM. “Internal residue loss”: rearrangements occurring during the fragmentation of carbohydrates derivatized at the reducing terminus. Anal Chem. 2002;74(4):734–40.
CAS
PubMed
Article
Google Scholar
Hecht ES, Loziuk PL, Muddiman DC. Xylose migration during tandem mass spectrometry of N-linked glycans. J Am Soc Mass Spectrom. 2017;28(4):729–32.
CAS
PubMed
PubMed Central
Article
Google Scholar
Brüll LP, Kovácik V, Thomas-Oates JE, Heerma W, Haverkamp J. Sodium-cationized oligosaccharides do not appear to undergo ‘internal residue loss’ rearrangement processes on tandem mass spectrometry. Rapid Commun Mass Spectrom. 1998;12(20):1520–32.
PubMed
Article
Google Scholar
Ernst B, Müller DR, Richter WJ. False sugar sequence ions in electrospray tandem mass spectrometry of underivatized sialyl-Lewis-type oligosaccharides. Int J Mass Spectrom Ion Process. 1997;160(1):283–90.
CAS
Article
Google Scholar
Ma Y-L, Vedernikova I, Van den Heuvel H, Claeys M. Internal glucose residue loss in protonated O-diglycosyl flavonoids upon low-energy collision-induced dissociation. J Am Soc Mass Spectrom. 2000;11(2):136–44.
CAS
PubMed
Article
Google Scholar
Brüll LP, Heerma W, Thomas-Oates J, Haverkamp J, Kovácik V, Kovác P. Loss of internal 1 → 6 substituted monosaccharide residues from underivatized and per-O-methylated trisaccharides. J Am Soc Mass Spectrom. 1997;8(1):43–9.
Article
Google Scholar
Wuhrer M, Koeleman CAM, Hokke CH, Deelder AM. Mass spectrometry of proton adducts of fucosylated N-glycans: fucose transfer between antennae gives rise to misleading fragments. Rapid Commun Mass Spectrom. 2006;20(11):1747–54.
CAS
PubMed
Article
Google Scholar
Franz AH, Lebrilla CB. Evidence for long-range glycosyl transfer reactions in the gas phase. J Am Soc Mass Spectrom. 2002;13(4):325–37.
CAS
PubMed
Article
Google Scholar
Mucha E, Lettow M, Marianski M, Thomas DA, Struwe WB, Harvey DJ, et al. Fucose migration in intact protonated glycan ions: a universal phenomenon in mass spectrometry. Angew Chem Int Ed. 2018;57(25):7440–3.
CAS
Article
Google Scholar
Pabst M, Kolarich D, Pöltl G, Dalik T, Lubec G, Hofinger A, et al. Comparison of fluorescent labels for oligosaccharides and introduction of a new postlabeling purification method. Anal Biochem. 2009;384(2):263–73.
CAS
PubMed
Article
Google Scholar
Royle L, Dwek RA, Rudd PM. Determining the structure of oligosaccharides N- and O-linked to glycoproteins. Curr Protoc Protein Sci. 2006;43(1):12.6.1–6.45.
Article
Google Scholar
Mucha E, Gonzalez Florez AI, Marianski M, Thomas DA, Hoffmann W, Struwe WB, et al. Glycan fingerprinting via cold-ion infrared spectroscopy. Angew Chem Int Ed. 2017;56(37):11248–51.
CAS
Article
Google Scholar
Varki A, Cummings RD, Aebi M, Packer NH, Seeberger PH, Esko JD, et al. Symbol nomenclature for graphical representations of glycans. Glycobiology. 2015;25(12):1323–4.
CAS
PubMed
PubMed Central
Article
Google Scholar
Hunter EPL, Lias SG. Evaluated gas phase Basicities and proton affinities of molecules: an update. J Phys Chem Ref Data. 1998;27(3):413–656.
CAS
Article
Google Scholar
Re S, Watabe S, Nishima W, Muneyuki E, Yamaguchi Y, MacKerell AD, et al. Characterization of conformational ensembles of protonated N-glycans in the gas-phase. Sci Rep. 2018;8(1):1644.
PubMed
PubMed Central
Article
CAS
Google Scholar
O’Flaherty R, Trbojević-Akmačić I, Greville G, Rudd PM, Lauc G. The sweet spot for biologics: recent advances in characterization of biotherapeutic glycoproteins. Expert Rev Proteomics. 2018;15(1):13–29.
PubMed
Article
CAS
Google Scholar
Ruhaak LR, Zauner G, Huhn C, Bruggink C, Deelder AM, Wuhrer M. Glycan labeling strategies and their use in identification and quantification. Anal Bioanal Chem. 2010;397(8):3457–81.
CAS
PubMed
PubMed Central
Article
Google Scholar
Han L, Costello CE. Mass spectrometry of glycans. Biochem Mosc. 2013;78(7):710–20.
CAS
Article
Google Scholar
Warnke S, Seo J, Boschmans J, Sobott F, Scrivens JH, Bleiholder C, et al. Protomers of benzocaine: solvent and permittivity dependence. J Am Chem Soc. 2015;137(12):4236–42.
CAS
PubMed
Article
Google Scholar
Nwosu C, Yau HK, Becht S. Assignment of core versus antenna fucosylation types in protein N-glycosylation via procainamide labeling and tandem mass spectrometry. Anal Chem. 2015;87(12):5905–13.
CAS
PubMed
Article
Google Scholar
Wuhrer M, Koeleman CAM, Deelder AM. Hexose rearrangements upon fragmentation of N-glycopeptides and reductively aminated N-glycans. Anal Chem. 2009;81(11):4422–32.
CAS
PubMed
Article
Google Scholar