Skip to main content

Advertisement

Log in

The role of incurred materials in method development and validation to account for food processing effects in food allergen analysis

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The issue of undeclared allergens represents a matter of great concern, being the subject of many alert notifications by the Rapid Alert System for Food and Feed portal of the European Commission, often leading to food recalls. The availability of reliable analytical approaches able to detect and quantify hidden allergens in processed foods is increasingly requested by the food industry, food safety authorities and regulatory bodies to protect sensitive consumers’ health. The present review discusses the fundamental role of incurred materials for method development and analytical performance assessment in a metrology perspective on testing for undeclared allergens in processed foodstuffs. Due to the nature of the analytes and their susceptibility to various processing effects, reliability and comparability of results have posed a great challenge. In this context, the use of incurred samples as reference materials permits simulation of the effects of food processing on target analyte structure affecting analyte extractability and detectability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dunlop JH, Keet CA. Epidemiology of food allergy. Immunol Allergy Clin N Am. 2018;38:13–25.

    Article  Google Scholar 

  2. Sicherer SH, Sampson HA. Food allergy: a review and update on epidemiology, pathogenesis, diagnosis, prevention, and management. J Allergy Clin Immunol. 2018;141:41–58.

    Article  CAS  PubMed  Google Scholar 

  3. Allen KJ, Turner PJ, Pawankar R, Taylor S, Sicherer S, Lack G, et al. Precautionary labelling of foods for allergen content: are we ready for a global framework? World Allergy Organ J. 2014;7:10.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Babu BNH, Wilfred A, Venkatesh YP. Emerging food allergens: identification of polyphenol oxidase as an important allergen in eggplant (Solanum melongena L.). Immunobiology. 2017;222:155–63.

    Article  CAS  Google Scholar 

  5. Nikolić J, Nešić A, Kull S, Schocker F, Jappe U, Gavrović-Jankulović M. Employment of proteomic and immunological based methods for the identification of catalase as novel allergen from banana. J Proteome. 2018;175:87–94.

    Article  CAS  Google Scholar 

  6. European Commission. Regulation (EU) no 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers. Off J Eur Union. 2011;L304:18–63.

    Google Scholar 

  7. Pádua I, Moreira A, Moreira P, Melo de Vasconcelos F, Barros R. Impact of the regulation (EU) 1169/2011: Allergen-related recalls in the rapid alert system for food and feed (RASFF) portal. Food Control. 2019;98:389–98.

  8. Rapid Alert System for Food and Feed (RASFF), European Union. 2017 Annual Report. 2018. https://ec.europa.eu/food/sites/food/files/safety/docs/rasff_annual_report_2017.pdf. Accessed 12 November 2018.

  9. Allen KJ, Taylor SL. The consequences of precautionary allergen labeling: safe haven or unjustifiable burden? J Allergy Clin Immunol Pract. 2018;6:353–60.

    Article  Google Scholar 

  10. Blom WM, Michelsen-Huisman AD, van Os-Medendorp H, van Duijn G, de Zeeuw-Brouwer ML, Versluis A, et al. Accidental food allergy reactions: products and undeclared ingredients. J Allergy Clin Immunol. 2018;142:865–75.

    Article  PubMed  Google Scholar 

  11. Versluis A, Knulst AC, Kruizinga AG, Michelsen A, Houben GF, Baumert JL, et al. Frequency, severity and causes of unexpected allergic reactions to food: a systematic literature review. Clin Exp Allergy. 2014;45:347–67.

    Article  Google Scholar 

  12. Garber EAE, Parker CH, Handy SM, Cho CY, Rakhi Panda R, Samadpour M, et al. Presence of undeclared food allergens in cumin: the need for multiplex methods. J Agric Food Chem. 2016;64:1202–11.

    Article  CAS  PubMed  Google Scholar 

  13. Cucu T, Jacxsens L, De Meulenaer B. Analysis to support allergen risk management: which way to go? J Agric Food Chem. 2013;61:5624–33.

    Article  CAS  PubMed  Google Scholar 

  14. Walker MJ, Burns DT, Elliott CT, Gowlandc MH, Mills ENC. Is food allergen analysis flawed? Health and supply chain risks and a proposed framework to address urgent analytical needs. Analyst. 2016;141:24–35.

    Article  CAS  PubMed  Google Scholar 

  15. Lacorn M, Immer U. Standardization in allergen determination. Accred Qual Assur. 2010;15:207–16.

    Article  CAS  Google Scholar 

  16. Hajas L, Scherf KA, Török K, Bugyi Z, Schall E, Poms RE, et al. Variation in protein composition among wheat (Triticum aestivum L.) cultivars to identify cultivars suitable as reference material for wheat gluten analysis. Food Chem. 2018;267:387–94.

    Article  CAS  PubMed  Google Scholar 

  17. Schopf M, Scherf KA. Wheat cultivar and species influence variability of gluten ELISA analyses based on polyclonal and monoclonal antibodies R5 and G12. J Cereal Sci. 2018;83:32–41.

    Article  CAS  Google Scholar 

  18. European Commission. Commission implementing regulation (EU) no 828/2014 of 30 July 2014 on the requirements for the provision of information to consumers on the absence or reduced presence of gluten in food. Off J Eur Union. 2014;L228:5–8.

    Google Scholar 

  19. Lacorn M, Immer U. Allergen determination in food: reference materials and traceability of results. Accred Qual Assur. 2011;16:449–52.

    Article  CAS  Google Scholar 

  20. Török K, Horváth V, Horváth A, Hajas L, Bugyi Z, Tömösközi S. Investigation of incurred single-and multi-component model food matrices for determination of food proteins triggering allergy and coeliac disease. Eur Food Res Technol. 2014;239:923–32.

    Article  CAS  Google Scholar 

  21. Bugyi Z, Nagy J, Török K, Hajas L, Tömösközi S. Towards development of incurred materials for quality assurance purposes in the analysis of food allergens. Anal Chim Acta. 2010;672:25–9.

    Article  CAS  PubMed  Google Scholar 

  22. Monaci L, De Angelis E, Montemurro N, Pilolli R. Comprehensive overview and recent advances in proteomics MS based methods for food allergens analysis. Trends Anal Chem. 2018;106:21–36.

    Article  CAS  Google Scholar 

  23. Bianchi F, Giannetto M, Careri M. Analytical systems and metrological traceability of measurement data in food control assessment. Trends Anal Chem. 2018;107:142–50.

    Article  CAS  Google Scholar 

  24. Parker CH, Khuda SE, Pereira M, Ross MM, Fu T-J, Fan X, et al. Multi-allergen quantitation and the impact of thermal treatment in industry-processed baked goods by ELISA and liquid chromatography-tandem mass spectrometry. J Agric Food Chem. 2015;63:10669–80.

    Article  CAS  PubMed  Google Scholar 

  25. Poms RE. MoniQA's contribution towards a global harmonisation of foodstuff quality and safety assessment and monitoring strategies. Qual Assur Saf Crop Foods. 2013;5:3–6.

    Article  Google Scholar 

  26. Nitride C, Lee V, Baricevic-Jones I, Adel-Patient K, Baumgartner S, Mills ENC. Allergen analysis within a risk assessment framework: approaches to development of targeted mass spectrometry methods for allergen detection and quantification in the iFAAM project. J AOAC Int. 2018;101:83–90.

    Article  CAS  PubMed  Google Scholar 

  27. Prado M, Ortea I, Vial S, Rivas J, Calo-Mata P, Barros-Velázquez J. Advanced DNA- and protein-based methods for the detection and investigation of food allergens. Crit Rev Food Sci Nutr. 2016;56:2511–42.

    Article  CAS  PubMed  Google Scholar 

  28. van Hengel AJ. Food allergen detection methods and the challenge to protect food-allergic consumers. Anal Bioanal Chem. 2007;389:111–8.

    Article  CAS  PubMed  Google Scholar 

  29. Codex Alimentarius Commission. Standard for foods for special dietary use for persons intolerant to gluten. CODEX STAN 118–1979 (Adopted in 1979. Amendment: 1983 and 2015. Revision: 2008).

  30. Diaz-Amigo C, Popping B. Accuracy of ELISA detection methods for gluten and reference materials: a realistic assessment. J Agric Food Chem. 2013;61:5681–8.

    Article  CAS  PubMed  Google Scholar 

  31. Monaci L, Visconti A. Immunochemical and DNA-based methods in food allergen analysis and quality assurance perspectives. Trends Food Sci Technol. 2010;21:272–83.

    Article  CAS  Google Scholar 

  32. Elviri L, Mattarozzi M (2012) Food Proteomics. In: Elsevier Inc. editor. Chemical Analysis of Food: Techniques and Applications. pp 519–37.

  33. Andjelković U, Gavrović-Jankulović M, Martinović T, Josić D. Omics methods as a tool for investigation of food allergies. Trends Anal Chem. 2017;96:107–15.

    Article  CAS  Google Scholar 

  34. Słowianek M, Majak I. Methods of allergen detection based on DNA analysis. Biotechnol Food Sci. 2011;75:39–44.

    Google Scholar 

  35. Koeberl M, Clarke D, Lopata AL. Next generation of food allergen quantification using mass spectrometric systems. J Proteome Res. 2014;13:3499–509.

    Article  CAS  PubMed  Google Scholar 

  36. Ahsan N, Shyama Prasad Rao R, Gruppuso PA, Ramratnam B, Salomon AR. Targeted proteomics: current status and future perspectives for quantification of food allergens. J Proteome. 2016;143:15–23.

    Article  CAS  Google Scholar 

  37. Planque M, Arnould T, Gillard N. Food allergen analysis: detection, quantification and validation by mass spectrometry. Allergen: IntechOpen publisher; 2017. p. 8–41.

    Google Scholar 

  38. Ross GMS, Bremer MGEG, Nielen MWF. Consumer-friendly food allergen detection: moving towards smartphone-based immunoassays. Anal Bioanal Chem. 2018;410:5353–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pilolli R, Monaci L, Visconti A. Advances in biosensor development based on integrating nanotechnology and applied to food-allergen management. Trends Anal Chem. 2013;47:12–26.

    Article  CAS  Google Scholar 

  40. Hosu O, Selvolini G, Marrazza G. Recent advances of immunosensors for detecting food allergens. Curr Opin Electrochem. 2018;10:149–56.

    Article  CAS  Google Scholar 

  41. Alves RC, Barroso MF, González-García MB, Oliveira MBPP, Delerue-Matos C. New trends in food allergens detection: toward biosensing strategies. Crit Rev Food Sci Nutr. 2016;56:2304–19.

    Article  CAS  PubMed  Google Scholar 

  42. Khedri M, Ramezani M, Rafatpanah H, Abnous K. Detection of food-born allergens with aptamer-based biosensors. Trends Anal Chem. 2018;103:126–36.

    Article  CAS  Google Scholar 

  43. Neethirajan S, Weng X, Tah A, Cordero JO, Ragavan KV. Nano-biosensor platforms for detecting food allergens – New trends. Sens Bio-Sens Res. 2018;18:13–30.

    Article  Google Scholar 

  44. Rzychon M, Brohée M, Cordeiro F, Haraszi R, Ulberth F, O’Connor G. The feasibility of harmonizing gluten ELISA measurements. Food Chem. 2017;234:144–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Török K, Hajas L, Horváth V, Schall E, Bugyi Z, Kemény S, et al. Identification of the factors affecting the analytical results of food allergen ELISA methods. Eur Food Res Technol. 2015;241:127–36.

    Article  CAS  Google Scholar 

  46. Taylor SL, Nordlee JA, Niemann LM, Lambrecht DM. Allergen immunoassays-considerations for use of naturally incurred standards. Anal Bioanal Chem. 2009;395:83–92.

    Article  CAS  PubMed  Google Scholar 

  47. Koeberl M, Sharp MF, Tian R, Buddhadasa S, Clarke D, Roberts J. Lupine allergen detecting capability and cross-reactivity of related legumes by ELISA. Food Chem. 2018;256:105–12.

    Article  CAS  PubMed  Google Scholar 

  48. Johnson PE, Baumgartner S, Aldick T, Bessant C, Giosafatto V, Heick J, et al. Current perspectives and recommendations for the development of mass spectrometry methods for the determination of allergens in foods. J AOAC Int. 2011;94:1026–33.

    CAS  PubMed  Google Scholar 

  49. Brockmeyer J. Novel approaches for the MS-based detection of food allergens: high resolution, MS3, and beyond. J AOAC Int. 2018;101:124–31.

    Article  CAS  PubMed  Google Scholar 

  50. Planque M, Arnould T, Dieu M, Delahauta P, Renard P, Gillard N. Advances in ultra-high performance liquid chromatography coupled to tandem mass spectrometry for sensitive detection of several food allergens in complex and processed foodstuffs. J Chromatogr A. 2016;1464:115–23.

    Article  CAS  PubMed  Google Scholar 

  51. Planque M, Arnould T, Dieu M, Delahaut P, Renard P, Gillard N. Liquid chromatography coupled to tandem mass spectrometry for detecting ten allergens in complex and incurred foodstuffs. J Chromatogr A. 2017;1530:138–51.

    Article  CAS  PubMed  Google Scholar 

  52. Planque M, Arnould T, Delahauta P, Renard P, Dieu M, Gillard N. Development of a strategy for the quantification of food allergens in several food products by mass spectrometry in a routine laboratory. Food Chem. 2019;274:35–45.

    Article  CAS  PubMed  Google Scholar 

  53. Manfredi A, Mattarozzi M, Giannetto M, Careri M. Multiplex liquid chromatography-tandem mass spectrometry for the detection of wheat, oat, barley and rye prolamins towards the assessment of gluten-free product safety. Anal Chim Acta. 2015;895:62–70.

    Article  CAS  PubMed  Google Scholar 

  54. Pilolli R, De Angelis E, Monaci L. Streamlining the analytical workflow for multiplex MS/MS allergen detection in processed foods. Food Chem. 2017;221:1747–53.

    Article  CAS  PubMed  Google Scholar 

  55. Pilolli R, De Angelis E, Monaci L. In house validation of a high resolution mass spectrometry Orbitrap-based method for multiple allergen detection in a processed model food. Anal Bioanal Chem. 2018;410:5653–62.

    Article  CAS  PubMed  Google Scholar 

  56. New LS, Schreiber A, Stahl-Zeng J, Liu H-F. Simultaneous analysis of multiple allergens in food products by LC-MS/MS. J AOAC Int. 2018;101:132–45.

    Article  CAS  PubMed  Google Scholar 

  57. Boo CC, Parker CH, Jackson LS. A targeted LC-MS/MS method for the simultaneous detection and quantitation of egg, milk, and peanut allergens in sugar cookies. J AOAC Int. 2018;101:108–17.

    Article  CAS  PubMed  Google Scholar 

  58. Heick J, Fischer M, Pöpping B. First screening method for the simultaneous detection of seven allergens by liquid chromatography mass spectrometry. J Chromatogr A. 2011;1218:938–43.

    Article  CAS  PubMed  Google Scholar 

  59. Monaci L, Losito I, De Angelis E, Pilolli R, Visconti A. Multi-allergen quantification of fining-related egg and milk proteins in white wines by high-resolution mass spectrometry. Rapid Commun Mass Spectrom. 2013;27:2009–18.

    Article  CAS  PubMed  Google Scholar 

  60. Korte R, Oberleitner D, Brockmeyer J. Determination of food allergens by LC-MS: impacts of sample preparation, food matrix, and thermal processing on peptide detectability and quantification. J Proteome. in press. https://doi.org/10.1016/j.jprot.2018.11.002.

  61. Gavage M, Van Vlierberghe K, Van Poucke C, De Loose M, Gevaert K, Dieu M, et al. Selection of egg peptide biomarkers in processed food products by high resolution mass spectrometry. J Chromatogr A. 2019;1584:115–25.

    Article  CAS  PubMed  Google Scholar 

  62. Careri M, Elviri L, Boquett Lagos J, Mangia A, Speroni F, Terenghi M. Selective and rapid immunomagnetic bead-based sample treatment for the liquid chromatography–electrospray ion-trap mass spectrometry detection of Ara h3/4 peanut protein in foods. J Chromatogr A. 2008;1206:89–94.

    Article  CAS  PubMed  Google Scholar 

  63. Bignardi C, Mattarozzi M, Penna A, Sidoli S, Elviri L, Careri M, et al. A rapid size-exclusion solid-phase extraction step for enhanced sensitivity in multi-allergen determination in dark chocolate and biscuits by liquid chromatography–tandem mass spectrometry. Food Anal Methods. 2013;6:1144–52.

    Article  Google Scholar 

  64. Mattarozzi M, Milioli M, Bignardi C, Elviri L, Corradini C, Careri M. Investigation of different sample pre-treatment routes for liquid chromatography-tandem mass spectrometry detection of caseins and ovalbumin in fortified red wine. Food Control. 2014;38:82–7.

    Article  CAS  Google Scholar 

  65. Gu S, Chen N, Zhou Y, Zhao C, Zhan L, Qu L, et al. A rapid solid-phase extraction combined with liquid chromatography-tandem mass spectrometry for simultaneous screening of multiple allergens in chocolates. Food Control. 2018;84:89–96.

    Article  CAS  Google Scholar 

  66. Svobodova M, Mairal T, Nadal P, Bermudo MC, O’Sullivan CK. Ultrasensitive aptamer based detection of β-conglutin food allergen. Food Chem. 2014;165:419–23.

    Article  CAS  PubMed  Google Scholar 

  67. Pierboni E, Rondini C, Torricelli M, Ciccone L, Tovo GR, Mercuri ML, et al. Digital PCR for analysis of peanut and soybean allergens in foods. Food Control. 2018;92:128–36.

    Article  CAS  Google Scholar 

  68. Costa J, Oliveira MBPP, Mafra I. Effect of thermal processing on the performance of the novel single-tube nested real-time PCR for the detection of walnut allergens in sponge cakes. Food Res Int. 2013;54:1722–9.

    Article  CAS  Google Scholar 

  69. Villa C, Costa J, Gondar C, Oliveira MBPP, Mafra I. Effect of food matrix and thermal processing on the performance of a normalised quantitative real-time PCR approach for lupine (Lupinus albus) detection as a potential allergenic food. Food Chem. 2018;262:251–9.

    Article  CAS  PubMed  Google Scholar 

  70. Linacero R, Ballesteros I, Sanchiz A, Prieto N, Iniesto E, Martinez Y, et al. Detection by real time PCR of walnut allergen coding sequences in processed foods. Food Chem. 2016;202:334–40.

    Article  CAS  PubMed  Google Scholar 

  71. Sheu S-C, Tsou P-C, Lien Y-Y, Lee M-S. Development of loop-mediated isothermal amplification (LAMP) assays for the rapid detection of allergic peanut in processed food. Food Chem. 2018;257:67–74.

    Article  CAS  PubMed  Google Scholar 

  72. Manfredi A, Giannetto M, Mattarozzi M, Costantini M, Mucchino C, Careri M. Competitive immunosensor based on gliadin immobilization on disposable carbon-nanogold screen-printed electrodes for rapid determination of celiotoxic prolamins. Anal Bioanal Chem. 2016;408:7289–98.

    Article  CAS  PubMed  Google Scholar 

  73. Hideshima S, Saito M, Fujita K, Harada Y, Tsuna M, Sekiguchi S, et al. Label-free detection of allergens in food via surfactant-induced signal amplification using a field effect transistor-based biosensor. Sensors Actuators B. 2018;254:1011–6.

    Article  CAS  Google Scholar 

  74. Eissa S, Zourob M. In vitro selection of DNA aptamers targeting β-lactoglobulin and their integration in graphene-based biosensor for the detection of milk allergen. Biosens Bioelectron. 2017;91:169–74.

    Article  CAS  PubMed  Google Scholar 

  75. Angelopoulou M, Petrou PS, Makarona E, Haasnoot W, Moser I, Jobst G, et al. Ultrafast multiplexed-allergen detection through advanced fluidic design and monolithic interferometric silicon chips. Anal Chem. 2018;90:9559–67.

    Article  CAS  PubMed  Google Scholar 

  76. Lin H-Y, Huang C-H, Park J, Pathania D, Castro CM, Fasano A, et al. Integrated magneto-chemical sensor for on- site food allergen detection. ACS Nano. 2017;11:10062–9.

    Article  CAS  PubMed  Google Scholar 

  77. Benedé S, Ruiz-Valdepeñas Montiel V, Povedano E, Villalba M, Mata L, Galán-Malo P, et al. Fast amperometric immunoplatform for ovomucoid traces determination in fresh and baked foods. Sensors Actuators B. 2018;265:421–8.

    Article  CAS  Google Scholar 

  78. Vanga SK, Singh A, Raghavan V. Review of conventional and novel food processing methods on food allergens. Crit Rev Food Sci Nutr. 2017;57:2077–94.

    Article  CAS  PubMed  Google Scholar 

  79. Ekezie F-GC, Cheng J-H, Sun D-W. Effects of nonthermal food processing technologies on food allergens: a review of recent research advances. Trends Food Sci Technol. 2018;74:12–25.

    Article  CAS  Google Scholar 

  80. Khan MU, Ahmed I, Lin H, Li Z, Costa J, Mafra I, et al. Potential efficacy of processing technologies for mitigating crustacean allergenicity. Crit Rev Food Sci Nutr. 2018. https://doi.org/10.1080/10408398.2018.1471658.

  81. Golkar A, Milani JM, Vasiljevic T. Altering allergenicity of cow's milk by food processing for applications in infant formula. Crit Rev Food Sci Nutr. 2018. https://doi.org/10.1080/10408398.2017.1363156.

  82. Rahaman T, Vasiljevic T, Ramchandran L. Effect of processing on conformational changes of food proteins related to allergenicity. Trends Food Sci Technol. 2016;49:24–34.

    Article  CAS  Google Scholar 

  83. Gomaa A, Boye J. Impact of irradiation and thermal processing on the immunochemical detection of milk and egg allergens in foods. Food Res Int. 2015;74:275–83.

    Article  CAS  PubMed  Google Scholar 

  84. Guan A, Mei K, Lv M, Lu J, Lou Q, Yang W. The effect of electron beam irradiation on IgG binding capacity and conformation of tropomyosin in shrimp. Food Chem. 2018;264:250–4.

    Article  CAS  PubMed  Google Scholar 

  85. Monaci L, Brohée M, Tregoat V, van Hengel A. Influence of baking time and matrix effects on the detection of milk allergens in cookie model food system by ELISA. Food Chem. 2011;127:669–75.

    Article  CAS  PubMed  Google Scholar 

  86. Gomaa A, Boye JI. Impact of thermal processing time and cookie size on the detection of casein, egg, gluten and soy allergens in food. Food Res Int. 2013;52:483–9.

    Article  CAS  Google Scholar 

  87. Li H, Byrne K, Galiamov R, Mendoza-Porras O, Bose U, Howitt CA, et al. Using LC-MS to examine the fermented food products vinegar and soy sauce for the presence of gluten. Food Chem. 2018;254:302–8.

    Article  CAS  PubMed  Google Scholar 

  88. Khuda SE, Jackson LS, Fu T-J, Williams KM. Effects of processing on the recovery of food allergens from a model dark chocolate matrix. Food Chem. 2015;168:580–7.

    Article  CAS  PubMed  Google Scholar 

  89. García E, Llorente M, Hernando A, Kieffer R, Wieser H, Méndez E. Development of a general procedure for complete extraction of gliadins for heat processed and unheated foods. Eur J Gastroenterol Hepatol. 2005;17:529–39.

    Article  PubMed  Google Scholar 

  90. Mena MC, Lombardía M, Hernando A, Méndez E, Albar JP. Comprehensive analysis of gluten in processed foods using a new extraction method and a competitive ELISA based on the R5 antibody. Talanta. 2012;91:33–40.

    Article  CAS  PubMed  Google Scholar 

  91. Iniesto E, Jiménez A, Prieto N, Cabanillas B, Burbano C, Pedrosa MM, et al. Real time PCR to detect hazelnut allergen coding sequences in processed foods. Food Chem. 2013;138:1976–81.

    Article  CAS  PubMed  Google Scholar 

  92. Eurachem. Eurachem Guide. “Eurachem Guide: The Fitness for Purpose of Analytical Methods - A Laboratory Guide to Method Validation and Related Topics, (2nd ed. 2014). B. Magnusson and U. Örnemark (eds.). Available from www.eurachem.org. Accessed 12 November 2018.

  93. Trucksess MW, Whitaker TB, Slate AB, Williams KM, Brewer VA, Whittaker P, et al. Variation of analytical results for peanuts in energy bars and milk chocolate. J AOAC Int. 2004;87:943–9.

    CAS  PubMed  Google Scholar 

  94. Sharma GM, Khuda SE, Pereira M, Slate A, Jackson LS, Pardo C, et al. Development of an incurred cornbread model for gluten detection by immunoassays. J Agric Food Chem. 2013;61:12146–54.

    Article  CAS  PubMed  Google Scholar 

  95. Downs ML, Baumert JL, Taylor SL, Mills ENC. Mass spectrometric analysis of allergens in roasted walnuts. J Proteome. 2016;142:62–9.

    Article  CAS  Google Scholar 

  96. Azarnia S, Boye JI, Mongeon V, Sabik H. Detection of ovalbumin in egg white, whole egg and incurred pasta using LC-ESI-MS/MS and ELISA. Food Res Int. 2013;52:526–34.

    Article  CAS  Google Scholar 

  97. Ito K, Yamamoto T, Oyama Y, Tsuruma R, Saito E, Saito Y, et al. Food allergen analysis for processed food using a novel extraction method to eliminate harmful reagents for both ELISA and lateral-flow tests. Anal Bioanal Chem. 2016;408:5973–84.

    Article  CAS  PubMed  Google Scholar 

  98. Lamberti C, Acquadro E, Corpillo D, Giribaldi M, Decastelli L, Garino C, et al. Validation of a mass spectrometry-based method for milk traces detection in baked food. Food Chem. 2016;199:119–27.

    Article  CAS  PubMed  Google Scholar 

  99. Montserrat M, Sanz D, Juan T, Herrero A, Sánchez L, Calvo M, et al. Detection of peanut (Arachis hypogaea) allergens in processed foods by immunoassay: influence of selected target protein and ELISA format applied. Food Control. 2015;54:300–7.

    Article  CAS  Google Scholar 

  100. Monaci L, Nørgaard JV, van Hengel AJ. Feasibility of a capillary LC/ESI-Q-TOF MS method for the detection of milk allergens in an incurred model food matrix. Anal Methods. 2010;2:967–72.

    Article  CAS  Google Scholar 

  101. Nimata M, Okada H, Kurihara K, Sugimoto T, Honjoh T, Kuroda K, et al. A harmonized immunoassay with liquid chromatography-mass spectrometry analysis in egg allergen determination. Anal Bioanal Chem. 2018;410:325–35.

    Article  CAS  PubMed  Google Scholar 

  102. Sayers RL, Gethings LA, Lee V, Balasundaram A, Johnson PE, Marsh JA, et al. Microfluidic separation coupled to mass spectrometry for quantification of peanut allergens in a complex food matrix. J Proteome Res. 2018;17:647–55.

    Article  CAS  PubMed  Google Scholar 

  103. Segura-Gil I, Nicolau-Lapeña I, Galán-Malo P, Mata L, Calvo M, Sánchez L, et al. Development of two ELISA formats to determine glycinin. Application to detect soy in model and commercial processed food. Food Control. 2018;93:32–9.

    Article  CAS  Google Scholar 

  104. Röder M, Filbert H, Holzhauser T. A novel, sensitive and specific real-time PCR for the detection of traces of allergenic Brazil nut (Bertholletia excelsa) in processed foods. Anal Bioanal Chem. 2010;398:2279–88.

    Article  CAS  PubMed  Google Scholar 

  105. Bugyi Z, Török K, Hajas L, Adonyi Z, Popping B, Tömösközi S. Comparative study of commercially available gluten ELISA kits using an incurred reference material. Qual Assur Saf Crop Foods. 2013;5:79–87.

    Article  CAS  Google Scholar 

  106. Shibahara Y, Uesaka Y, Wang J, Yamada S, Shiomi K. A sensitive enzyme-linked immunosorbent assay for the determination of fish protein in processed foods. Food Chem. 2013;136:675–81.

    Article  CAS  PubMed  Google Scholar 

  107. Dumont V, Kerbach S, Poms R, Johnson P, Mills C, Popping B, et al. Development of milk and egg incurred reference materials for the validation of food allergen detection methods. Qual Assur Saf Crop Foods. 2010;2:208–15.

    Article  CAS  Google Scholar 

  108. Khuda S, Slate A, Pereira M, Al-Taher F, Jackson L, Diaz-Amigo C, et al. Effect of processing on recovery and variability associated with immunochemical analytical methods for multiple allergens in a single matrix: sugar cookies. J Agric Food Chem. 2012;60:4195–203.

    Article  CAS  PubMed  Google Scholar 

  109. Gomaa A, Boye J. Simultaneous detection of multi-allergens in an incurred food matrix using ELISA, multiplex flow cytometry and liquid chromatography mass spectrometry (LC-MS). Food Chem. 2015;175:585–92.

    Article  CAS  PubMed  Google Scholar 

  110. Wise SA. What is novel about certified reference materials? Anal Bioanal Chem. 2018;410:2045–9.

    Article  CAS  PubMed  Google Scholar 

  111. Loh W, Tang MLK. The epidemiology of food allergy in the global context. Int J Environ Res Public Health. 2018;15:2043.

    Article  PubMed Central  Google Scholar 

  112. Abbott M, Hayward S, Ross W, Godefroy SB, Ulberth F, Van Hengel AJ, et al. Validation procedures for quantitative food allergen ELISA methods: community guidance and best practices. J AOAC Int. 2010;93:442–50.

    CAS  Google Scholar 

  113. AOAC International. Standard Method Performance Requirements (SMPRs®) for Detection and Quantitation of Selected Food Allergens. 2016;AOAC SMPR 2016.002.

  114. Bugyi Z, Török K, Hajas L, Adonyi Z, Poms RE, Popping B, et al. Development of incurred reference material for improving conditions of gluten quantification. J AOAC Int. 2012;95:382–7.

    Article  CAS  PubMed  Google Scholar 

  115. International Organization for Standardization. Reference materials - Guidance for the characterization and the assessment of the homogeneity and stability of the material. 2017; ISO/Guide 35:2017.

  116. Johnson PE, Rigby NM, Dainty JR, Mackie AR, Immer UU, Rogers A, et al. A multi-laboratory evaluation of a clinically-validated incurred quality control material for analysis of allergens in food. Food Chem. 2014;148:30–6.

    Article  CAS  PubMed  Google Scholar 

  117. European Commission. Regulation (EU) no 2015/2283 of the European Parliament and of the Council of 25 November 2015 on novel foods. Off J Eur Union. 2015;L327:1–22.

    Google Scholar 

  118. de Gier S, Verhoeckx K. Insect (food) allergy and allergens. Mol Immunol. 2018;100:82–106.

    Article  CAS  PubMed  Google Scholar 

  119. Broekman H, Verhoeckx KC, den Hartog Jager CF, Kruizinga AG, Pronk-Kleinjan M, Remington BC, et al. Majority of shrimp-allergic patients are allergic to mealworm. J Allergy Clin Immunol. 2016;137:1261–3.

    Article  PubMed  Google Scholar 

  120. Pali-Schöll I, Verhoeckx K, Mafra I, Bavaro SL, Mills ENC, Monaci L. Allergenic and novel food proteins: state of the art and challenges in the allergenicity assessment. Trends Food Sci Technol. in press. https://doi.org/10.1016/j.tifs.2018.03.007.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Mattarozzi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Young Investigators in (Bio-)Analytical Chemistry with guest editors Erin Baker, Kerstin Leopold, Francesco Ricci, and Wei Wang.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mattarozzi, M., Careri, M. The role of incurred materials in method development and validation to account for food processing effects in food allergen analysis. Anal Bioanal Chem 411, 4465–4480 (2019). https://doi.org/10.1007/s00216-019-01642-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01642-3

Keywords

Navigation