Skip to main content
Log in

A multichannel microchip containing 16 chambers packed with antibody-functionalized beads for immunofluorescence assay

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A multichannel chip containing 16 microchambers was developed for fast and sensitive immunoassays. In each chamber, antibody-functionalized nonmagnetic beads were applied as the solid phase to capture target antigens. Four types of IgGs (human, rabbit, chicken, and mouse) could be detected simultaneously by our combining this microchip with a sandwich immunoassay technique. A three-layer chip structure was investigated for integration of multiple processes, including washing, immune reaction, and detection, in one microchip. Moreover, the proposed chip design could improve batch-to-batch repeatability and avoid interferences between different channels without the preparation of complex microvalves. The total operation time of this system was less than 30 min, with a desirable detection limit of 0.2 pg/mL. The results indicate that the microfluidic platform is promising for the immunoassay of multiple clinical biomarkers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. St John A, Price CP. Existing and emerging technologies for point-of-care testing. Clin Biochem Rev. 2014;35:155–67.

    PubMed  PubMed Central  Google Scholar 

  2. Yager P, Domingo GJ, Gerdes J. Point-of-care diagnostics for global health. Annu Rev Biomed Eng. 2008;10:107–44.

    Article  CAS  PubMed  Google Scholar 

  3. Chin CD, Linder V, Sia SK. Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip. 2012;12:2118–34.

    Article  CAS  PubMed  Google Scholar 

  4. Sato K, Yamanaka M, Takahashi H, Tokeshi M, Kimura H, Kitamori T. Microchip-based immunoassay system with branching multichannels for simultaneous determination of interferon-γ. Electrophoresis. 2002;23:734–9.

    Article  CAS  PubMed  Google Scholar 

  5. Yakovleva J, Davidsson R, Lobanova A, Bengtsson M, Eremin S, Laurell T, et al. Microfluidic enzyme immunoassay using silicon microchip with immobilized antibodies and chemiluminescence detection. Anal Chem. 2002;74:2994–3004.

    Article  CAS  PubMed  Google Scholar 

  6. Liang W, Lin H, Chen J, Chen C. Utilization of nanoparticles in microfluidic systems for optical detection. Microsyst Technol. 2016;22:2363–70.

    Article  Google Scholar 

  7. Chabinyc ML, Chiu DT, McDonald JC, Stroock AD, Christian JF, Karger AM, et al. An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications. Anal Chem. 2001;73:4491–8.

    Article  CAS  PubMed  Google Scholar 

  8. Bhattacharyya A, Klapperich CM. Design and testing of a disposable microfluidic chemiluminescent immunoassay for disease biomarkers in human serum samples. Biomed Microdevices. 2007;9:245–51.

    Article  CAS  PubMed  Google Scholar 

  9. Sia SK, Linder V, Parviz BA, Siegel A, Whitesides GM. An integrated approach to a portable and low cost immunoassay for resource-poor settings. Angew Chem Int Ed. 2004;43:498–502.

    Article  CAS  Google Scholar 

  10. Lafleur JP, Jönsson A, Senkbeil S, Kutter JP. Recent advances in lab-on-a-chip for biosensing applications. Biosens Bioelectron. 2016;76:213–33.

    Article  CAS  PubMed  Google Scholar 

  11. Shao G, Lu D, Fu Z, Du D, Ozanich RM, Wang W, et al. Design, fabrication and test of a pneumatically controlled, renewable, microfluidic bead trapping device for sequential injection analysis applications. Analyst. 2016;141:206–15.

    Article  CAS  PubMed  Google Scholar 

  12. Lacharme F, Vandevyver C, Gijs MAM. Magnetic beads retention device for sandwich immunoassay: comparison of off-chip and on-chip antibody incubation. Microfluid Nanofluid. 2009;7:479–87.

    Article  Google Scholar 

  13. Kurita R, Yokota Y, Sato Y, Mizutani F, Niwa O. On-chip enzyme immunoassay of a cardiac marker using a microfluidic device combined with a portable surface plasmon resonance system. Anal Chem. 2006;78:5525–31.

    Article  CAS  PubMed  Google Scholar 

  14. Lee BS, Lee JN, Park JM, Lee JG, Kim S, Cho YK, et al. A fully automated immunoassay from whole blood on a disc. Lab Chip. 2009;9:1548–55.

    Article  CAS  PubMed  Google Scholar 

  15. Sato K, Yamanaka M, Hagino T, Tokeshi M, Kimura H, Kitamori T. Microchip-based enzyme-linked immunosorbent assay (microELISA) system with thermal lens detection. Lab Chip. 2004;4:570–5.

    Article  CAS  PubMed  Google Scholar 

  16. Bai Y, Koh CG, Boreman M, Juang YJ, Tang IC, Lee LJ, et al. Surface modification for enhancing antibody binding on polymer-based microfluidic device for enzyme-linked immunosorbent assay. Langmuir. 2006;22:9458–67.

    Article  CAS  PubMed  Google Scholar 

  17. Giri B, Liu Y, Nchocho FN, Corcoran RC, Dutta D. Microfluidic ELISA employing an enzyme substrate and product species with similar detection properties. Analyst. 2018;143:989–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Antoniou A, Herlem G, André C, Guillaume Y, Gharbi T. Simple method for detection of extremely diluted anti beta-casein antibodies from glass bead based receptors. Talanta. 2011;84:632–7.

    Article  CAS  PubMed  Google Scholar 

  19. Tang D, Zhong Z, Niessner R, Knopp D. Multifunctional magnetic bead-based electrochemical immunoassay for the detection of aflatoxin B1 in food. Analyst. 2009;134:1554–60.

    Article  CAS  PubMed  Google Scholar 

  20. Guan X, Zhang H, Bi Y, Zhang L, Hao D. Rapid detection of pathogens using antibody-coated microbeads with bioluminescence in microfluidic chips. Biomed Microdevices. 2010;12:683–91.

    Article  CAS  PubMed  Google Scholar 

  21. Ng AHC, Uddayasankar U, Wheeler AR. Immunoassays in microfluidic systems. Anal Bioanal Chem. 2010;397:991–1007.

    Article  CAS  PubMed  Google Scholar 

  22. Darain F, Gan KL, Tjin SC. Antibody immobilization on to polystyrene substrate—on-chip immunoassay for horse IgG based on fluorescence. Biomed Microdevices. 2009;11:653–61.

    Article  CAS  PubMed  Google Scholar 

  23. Lee NY, Yang Y, Kim YS, Park S. Microfluidic immunoassay platform using antibody-immobilized glass beads and its application for detection of Escherichia coli O157:H7. Bull Korean Chem Soc. 2006;27:479–83.

    Article  CAS  Google Scholar 

  24. Kong J, Jiang L, Su X, Qin J, Du Y, Lin B. Integrated microfluidic immunoassay for the rapid determination of clenbuterol. Lab Chip. 2009;9:1541–7.

    Article  CAS  PubMed  Google Scholar 

  25. Sia SK, Whitesides GM. Microfluidic devices fabricated in poly(dimethylsioxane) for biological studies. Electrophoresis. 2003;24:3563–76.

    Article  CAS  PubMed  Google Scholar 

  26. Fu Z, Shao G, Wang J, Lu D, Wang W, Lin Y. Microfabricated renewable beads-trapping releasing flow cell for rapid antigen–antibody reaction in chemiluminescent immunoassay. Anal Chem. 2011;83:2685–90.

    Article  CAS  PubMed  Google Scholar 

  27. Lim TK, Ohta H, Matsunaga T. Microfabricated on-chip-type electrochemical flow immunoassay system for the detection of histamine released in whole blood samples. Anal Chem. 2003;75:3316–21.

    Article  CAS  PubMed  Google Scholar 

  28. Choi JW, Oh KW, Thomas JH, Heineman WR, Halsall HB, Nevin JH, et al. An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities. Lab Chip. 2002;2:27–30.

    Article  CAS  PubMed  Google Scholar 

  29. Jiang H, Weng X, Li D. Microfluidic whole-blood immunoassays. Microfluid Nanofluid. 2011;10:941–64.

    Article  CAS  Google Scholar 

  30. Lim CT, Zhang Y. Bead-based-microfluidic-immunoassays: the-next-generation. Biosens Bioelectron. 2007;22:1197–204.

    Article  CAS  PubMed  Google Scholar 

  31. Eteshola E, Leckband D. Development and characterization of an ELISA assay in PDMS microfluidic channels. Sens Actuators B. 2001;72:129–33.

    Article  CAS  Google Scholar 

  32. Wang L, Liu W, Li S, Liu T, Yan X, Shi Y, et al. Fast fabrication of microfluidic devices using a low-cost prototyping method. Microsyst Technol. 2016;22:677–86.

    Article  CAS  Google Scholar 

  33. Henares TG, Funano S, Terabe S, Mizutani F, Sekizawa R, Hisamoto H. Multiple enzyme linked immunosorbent assay system on a capillary-assembled microchip integrating valving and immuno-reaction functions. Anal Chim Acta. 2007;589:173–9.

    Article  CAS  PubMed  Google Scholar 

  34. Lee KH, Su YD, Chen SJ, Tseng FG, Lee GB. Microfluidic systems integrated with two-dimensional surface plasmon resonance phase imaging systems for microarray immunoassay. Biosens Bioelectron. 2007;23:466–72.

    Article  CAS  PubMed  Google Scholar 

  35. O’Connor EF, Paterson S, de la Rica R. Naked-eye detection as a universal approach to lower the limit of detection of enzyme-linked immunoassays. Anal Bioanal Chem. 2016;408:3389–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for funds provided by the National Natural Science Foundation of China (nos 81202378, 81311140268, 81300204, and 81803495) and the Fundamental Research Funds for the Central Universities of Central South University (no. 2018zzts860).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanpin Chen.

Ethics declarations

Written informed consent was obtained from patients for use of samples in the study. The study was approved by the Ethics Committee of Xiangya Medical College, Central South University (no. 2018051).

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, S., Hong, T., Liang, W. et al. A multichannel microchip containing 16 chambers packed with antibody-functionalized beads for immunofluorescence assay. Anal Bioanal Chem 411, 1579–1589 (2019). https://doi.org/10.1007/s00216-019-01601-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01601-y

Keywords

Navigation