Skip to main content
Log in

Highly sensitive and selective “off-on” fluorescent sensing platform for ClO in water based on silicon quantum dots coupled with nanosilver

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We present a new “off-on” fluorescence probe for detecting hypochlorite (ClO) based on silicon quantum dots coupled with silver nanoparticles (SiQDs/AgNPs) as nanocomplexes. Via introducing N-[3-(trimethoxysilyl)propyl]ethylenediamine and catechol as initial reactants, silicon quantum dots (SiQDs) with excellent properties were synthesized through a simple hydrothermal method. Transmission electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy were used to characterize the morphology and structure of quantum dots. The fluorescence of SiQDs could be quenched by the silver nanoparticles (AgNPs) by surface plasmon-enhanced energy transfer (SPEET) from SiQDs (donor) to AgNPs (acceptor). The AgNPs could be etched by adding ClO, thus freeing the SiQDs from the AgNP surfaces and restoring the SiQDs’ fluorescence. The sensing system exhibits many advantages, such as wide linear response range, high sensitivity, and excellent selectivity. Under optimized conditions, wide linear ranges (from 0.1 to 100.0 μM) and low detection limits (0.08 μM) were obtained for ClO.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lu T, Zhang L, Sun M, Deng D, Su Y, Yi L. Amino-functionalized metal-organic frameworks nanoplates-based energy transfer probe for highly selective fluorescence detection of free chlorine. Anal Chem. 2016;88(6):3413.

    Article  CAS  PubMed  Google Scholar 

  2. Rook JJ. Formation of haloforms during chlorination of natural water. Acta Polytech Hung. 2002;42(2):234–43.

    Google Scholar 

  3. Bellar TA, Lichtenberg JJ, Kroner RC. The occurrence of organohalides in chlorinated drinking waters. J Am Water Works Assoc. 1974;66(12):703–6.

    Article  CAS  Google Scholar 

  4. Hanson SJ, Punzalan RC, Greenup RA, Liu H, Sato TT, Havens PL. Incidence and risk factors for venous thromboembolism in critically ill children after trauma. J Pediatr Surg. 2010;45(9):1920–1.

    Article  Google Scholar 

  5. Hinckley AF, Bachand AM, Reif JS. Late pregnancy exposures to disinfection by-products and growth-related birth outcomes. Environ Health Perspect. 2005;113(12):1808–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Emmanuel E, Keck G, Blanchard JM, Vermande P, Perrodin Y. Toxicological effects of disinfections using sodium hypochlorite on aquatic organisms and its contribution to AOX formation in hospital wastewater. Environ Int. 2004;30(7):891–900.

    Article  CAS  PubMed  Google Scholar 

  7. Manish M, Rizwan SM, Khiem T, RS P, MA B. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014;20(7):1126–67.

    Article  CAS  Google Scholar 

  8. Goiffon RJ, Martinez SC, Piwnicaworms D. A rapid bioluminescence assay for measuring myeloperoxidase activity in human plasma. Nat Commun. 2015;6:6271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sugiyama S, Okada Y, Sukhova GK, Virmani R, Heinecke JW, Libby P. Macrophage myeloperoxidase regulation by granulocyte macrophage colony-stimulating factor in human atherosclerosis and implications in acute coronary syndromes. Am J Pathol. 2001;158(3):879–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Daugherty A, Dunn JL, Rateri DL, Heinecke JW. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest. 1994;94(1):437–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pan S, Deen MJ, Ghosh R. Low-cost graphite-based free chlorine sensor. Anal Chem. 2015;87(21):10734–7.

    Article  CAS  PubMed  Google Scholar 

  12. Tang Y, Su Y, Yang N, Zhang L, Lv Y. Carbon nitride quantum dots: a novel chemiluminescence system for selective detection of free chlorine in water. Anal Chem. 2014;86(9):4528.

    Article  CAS  PubMed  Google Scholar 

  13. Wang Y, Zhang P, Lu Q, Wang Y, Fu W, Tan Q, et al. Water-soluble MoS2 quantum dots are a viable fluorescent probe for hypochlorite. Mikrochim Acta. 2018;185(4):233.

    Article  CAS  PubMed  Google Scholar 

  14. Walekar LS, Pawar SP, Gore AH, Suryawanshi VD, Undare SS, Anbhule PV, et al. Surfactant stabilized AgNPs as a colorimetric probe for simple and selective detection of hypochlorite anion (ClO) in aqueous solution: environmental sample analysis. Colloid Surface A. 2016;491:78–85.

    Article  CAS  Google Scholar 

  15. Li K, Hou JT, Yang J, Yu XQ. A tumor-specific and mitochondria-targeted fluorescent probe for real-time sensing of hypochlorite in living cells. Chem Commun. 2017;53(40):5539–41.

    Article  CAS  Google Scholar 

  16. Yan L, Hu C, Li J. A fluorescence turn-on probe for rapid monitoring of hypochlorite based on coumarin Schiff base. Anal Bioanal Chem. 2018;410:7457.

    Article  CAS  PubMed  Google Scholar 

  17. Hosseini MS, Hashemipour Z, Hosseini N. Synthesis of l-tyrosine-capped ZnSe quantum dots and its application to hypochlorite determination in water. Int J Environ Anal Chem. 2016;96(10):1–14.

    Article  CAS  Google Scholar 

  18. Park S, Choi S, Yu J. DNA-encapsulated silver nanodots as ratiometric luminescent probes for hypochlorite detection. Nanoscale Res Lett. 2014;9(1):129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhan Y, Luo F, Guo L, Qiu B, Lin Y, Li J, et al. Preparation of an efficient ratiometric fluorescent nanoprobe (m-CDs@[Ru(bpy)3](2+)) for visual and specific detection of hypochlorite on site and in living cells. ACS Sens. 2017;2(11):1684–91.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang J, Yu SH. Highly photoluminescent silicon nanocrystals for rapid, label-free and recyclable detection of mercuric ions. Nanoscale. 2014;6(8):4096–101.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang XD, Chen XK, Yang JJ, Jia HR, Li YH, Chen Z, et al. Quaternized silicon nanoparticles with polarity-sensitive fluorescence for selectively imaging and killing gram-positive bacteria. Adv Funct Mater. 2016;26(33):5958–70.

    Article  CAS  Google Scholar 

  22. Zhong Y, Peng F, Bao F, Wang S, Ji X, Yang L, et al. Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes. J Am Chem Soc. 2013;135(22):8350–6.

    Article  CAS  PubMed  Google Scholar 

  23. Zhong Y, Sun X, Wang S, Peng F, Bao F, Su Y, et al. Facile, large-quantity synthesis of stable, tunable-color silicon nanoparticles and their application for long-term cellular imaging. ACS Nano. 2015;9(6):5958–67.

    Article  CAS  PubMed  Google Scholar 

  24. Yan Y, Zhang K, Yu H, Zhu H, Sun M, Hayat T, et al. Sensitive detection of sulfide based on the self-assembly of fluorescent silver nanoclusters on the surface of silica nanospheres. Talanta. 2017;174:387–93.

    Article  CAS  PubMed  Google Scholar 

  25. Qu F, Xia W, Xia L, You J, Han W. A ratiometric detection of heparin with high sensitivity based on aggregation-enhanced emission of gold nanoclusters triggered by silicon nanoparticles. Talanta. 2019;193:37–43.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang Y, Ning X, Mao G, Ji X, He Z. Fluorescence turn-on detection of target sequence DNA based on silicon nanodot-mediated quenching. Anal Bioanal Chem. 2018;410(13):3209–16.

    Article  CAS  PubMed  Google Scholar 

  27. Ma SD, Chen YL, Feng J, Liu JJ, Zuo XW, Chen XG. One-step synthesis of water-dispersible and biocompatible silicon nanoparticles for selective heparin sensing and cell imaging. Anal Chem. 2016;88(21):10474–81.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang X, Chen X, Kai S, Wang HY, Yang J, Wu FG, et al. Highly sensitive and selective detection of dopamine using one-pot synthesized highly photoluminescent silicon nanoparticles. Anal Chem. 2015;87(6):3360–5.

    Article  CAS  PubMed  Google Scholar 

  29. Yi Y, Deng J, Zhang Y, Li H, Yao S. Label-free Si quantum dots as photoluminescence probes for glucose detection. Chem Commun. 2013;49(6):612–4.

    Article  CAS  Google Scholar 

  30. Yi Y, Zhu G, Liu C, Huang Y, Zhang Y, Li H, et al. A label-free silicon quantum dots-based photoluminescence sensor for ultrasensitive detection of pesticides. Anal Chem. 2013;85(23):11464–70.

    Article  CAS  PubMed  Google Scholar 

  31. Chen S, Quan Y, Yu Y-L, Wang J-H. Graphene quantum dot/silver nanoparticle hybrids with oxidase activities for antibacterial application. ACS Biomater-Sci Eng. 2017;3(3):313–21.

    Article  CAS  Google Scholar 

  32. Ma JL, Yin BC, Wu X, Ye BC. Simple and cost-effective glucose detection based on carbon nanodots supported on silver nanoparticles. Anal Chem. 2017;89(2):1323–8.

    Article  CAS  PubMed  Google Scholar 

  33. Li J, Li Y, Shahzad SA, Chen J, Chen Y, Wang Y, et al. Fluorescence turn-on detection of glucose via the Ag nanoparticle mediated release of a perylene probe. Chem Commun. 2015;51(29):6354–6.

    Article  CAS  Google Scholar 

  34. Sasikumar T, Ilanchelian M. Colorimetric detection of hypochlorite based on the morphological changes of silver nanoprisms to spherical nanoparticles. Anal Methods. 2017;9(21):3151–8.

    Article  CAS  Google Scholar 

  35. Han Y, Chen Y, Feng J, Liu J, Ma S, Chen X. One-pot synthesis of fluorescent silicon nanoparticles for sensitive and selective determination of 2,4,6-trinitrophenol in aqueous solution. Anal Chem. 2017;89(5):3001–8.

    Article  CAS  PubMed  Google Scholar 

  36. Feng J, Chen Y, Han Y, Liu J, Ren C, Chen X. Fluorescent carbon nanoparticles: a low-temperature trypsin-assisted preparation and Fe(3+) sensing. Anal Chim Acta. 2016;926:107–17.

    Article  CAS  PubMed  Google Scholar 

  37. Ou S-H, Pan L-S, Jow J-J, Chen H-R, Ling T-R. Molecularly imprinted electrochemical sensor, formed on Ag screen-printed electrodes, for the enantioselective recognition of D and L phenylalanine. Biosens Bioelectron. 2018;105:143–50.

    Article  CAS  PubMed  Google Scholar 

  38. Liu X, Yan Z, Sun Y, Ren J, Qu X. A label-free ratiometric electrochemical DNA sensor for monitoring intracellular redox homeostasis. Chem Commun. 2017;53(46):6215–8.

    Article  CAS  Google Scholar 

  39. Zhu X, Zhao T, Nie Z, Liu Y, Yao S. Non-redox modulated fluorescence strategy for sensitive and selective ascorbic acid detection with highly photoluminescent nitrogen-doped carbon nanoparticles via solid-state synthesis. Anal Chem. 2015;87(16):8524–30.

    Article  CAS  PubMed  Google Scholar 

  40. Yu Y, Tao Y, Yang B, Wu D, Qin Y, Kong Y. Smart chiral sensing platform with alterable enantioselectivity. Anal Chem. 2017;89(23):12930–7.

    Article  CAS  PubMed  Google Scholar 

  41. Dong Y, Li G, Zhou N, Wang R, Chi Y, Chen G. Graphene quantum dot as a green and facile sensor for free chlorine in drinking water. Anal Chem. 2012;84(19):8378–82.

    Article  CAS  Google Scholar 

  42. Hu Y, Yang J, Jia L, Yu J-S. Ethanol in aqueous hydrogen peroxide solution: hydrothermal synthesis of highly photoluminescent carbon dots as multifunctional nanosensors. Carbon. 2015;93:999–1007.

    Article  CAS  Google Scholar 

  43. Tang Q, Yang T, Huang Y. Copper nanocluster-based fluorescent probe for hypochlorite. Microchim Acta. 2015;182(13–14):2337–43.

    Article  CAS  Google Scholar 

  44. Huang Y, Zhang P, Gao M, Zeng F, Qin A, Wu S, et al. Ratiometric detection and imaging of endogenous hypochlorite in live cells and in vivo achieved by using an aggregation induced emission (AIE)-based nanoprobe. Chem Commun. 2016;52(45):7288–91.

    Article  CAS  Google Scholar 

  45. Xue M, Zhang L, Zou M, Lan C, Zhan Z, Zhao S. Nitrogen and sulfur co-doped carbon dots: a facile and green fluorescence probe for free chlorine. Sensors Actuators B Chem. 2015;219:50–6.

    Article  CAS  Google Scholar 

Download references

Funding

This study received support from the National Natural Science Foundation of China (21607061), the Opening Project of State Key Laboratory of Chemo/Biosensing and Chemometrics of Hunan University (2016017), the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Collaborative Innovation Center of Technology and Material of Water Treatment, and the Program of Young Backbone Teachers in Jiangsu University (2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinhui Yi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1552 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Zhu, G., Zeng, W. et al. Highly sensitive and selective “off-on” fluorescent sensing platform for ClO in water based on silicon quantum dots coupled with nanosilver. Anal Bioanal Chem 411, 1561–1568 (2019). https://doi.org/10.1007/s00216-019-01597-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-01597-5

Keywords

Navigation