Skip to main content
Log in

Tris(2,2′-bipyridyl)ruthenium(II) electrochemiluminescent determination of ethyl formate

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Ethyl formate is extensively used as food flavor, fungicide, and larvicide. It naturally exists in coffee, fruits, honey, brandy, and rum as well as dust clouds in an interstellar space of the Milky Way galaxy. Herein, its electrochemiluminescence (ECL) property has been firstly investigated. It shows intense ECL in reaction with Ru(bpy)32+ as luminophore, and thus a rapid and sensitive detection method for ethyl formate is proposed. Effects of pH, working potential, scan rate, and concentration of Ru(bpy)32+ were studied. ECL spectrum analysis was used to reveal the reaction mechanism. At the optimized experimental conditions, a linear relationship between ECL intensities and concentrations of ethyl formate is observed from 3.0 μM to 1.0 mM (R2 = 0.997). The limit of detection for ethyl formate is 0.7 μM (S/N = 3). The relative standard deviation with 1.0 mM concentration of ethyl formate for nine analyses is 2.7%. A 101.20–102.10% recovery was obtained in a real samples analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xu G, Dong S. Electrochemiluminescent detection of chlorpromazine by selective preconcentration at a lauric acid-modified carbon paste electrode using Tris(2,2′-bipyridine)ruthenium(II). Anal Chem. 2000;72:5308–12. https://doi.org/10.1021/ac000507s.

    Article  CAS  PubMed  Google Scholar 

  2. Miao W. Electrogenerated chemiluminescence and its biorelated applications. Chem Rev. 2008;108:2506–53. https://doi.org/10.1021/cr068083a.

    Article  CAS  PubMed  Google Scholar 

  3. Liu Z, Qi W, Xu G. Recent advances in electrochemiluminescence. Chem Soc Rev. 2015;44:3117–42. https://doi.org/10.1039/C5CS00086F.

    Article  CAS  PubMed  Google Scholar 

  4. Li B, Zhou X, Liu H, Deng H, Huang R, Xing D. Simultaneous detection of antibiotic resistance genes on paper-based chip using [Ru(phen)2dppz]2+ turn-on fluorescence probe. ACS Appl Mater Interfaces. 2018;10(5):4494–501. https://doi.org/10.1021/acsami.7b17653.

    Article  CAS  PubMed  Google Scholar 

  5. Hu L, Li H, Han S, Xu G. Ru(bpy)3 2+ electrochemiluminescence in the presence of formaldehyde or formic acid. J Electroanal Chem. 2011;656:289–92. https://doi.org/10.1016/j.jelechem.2010.09.018.

    Article  CAS  Google Scholar 

  6. Yuan Y, Han S, Hu L, Parveen S, Xu G. Coreactants of tris(2,2′-bipyridyl)ruthenium(II) electrogenerated chemiluminescence. Electrochim Acta. 2012;82:484–92. https://doi.org/10.1016/j.electacta.2012.03.156.

    Article  CAS  Google Scholar 

  7. Richter MM. Electrochemiluminescence (ECL). Chem Rev. 2004;104:3003–36. https://doi.org/10.1021/cr020373d.

    Article  CAS  PubMed  Google Scholar 

  8. Choi J-P, Bard AJ. Electrogenerated chemiluminescence (ECL) 79. Reductive-oxidation ECL of tris(2,2′ -bipyridine)ruthenium(II) using hydrogen peroxide as a coreactant in pH 75 phosphate buffer solution. Anal Chim Acta. 2005;541:141–8. https://doi.org/10.1016/j.aca.2004.11.075.

    Article  CAS  Google Scholar 

  9. Li L, Chen Y, Zhu J-J. Recent advances in electrochemiluminescence analysis. Anal Chem. 2017;89:358–71. https://doi.org/10.1021/acs.analchem.6b04675.

    Article  CAS  PubMed  Google Scholar 

  10. Ma S, Sun H, Li Y, Qi H, Zheng J. Discrimination between 5-hydroxymethylcytosine and 5-methylcytosine in DNA via selective electrogenerated chemiluminescence (ECL) labeling. Anal Chem. 2016;88:9934–40. https://doi.org/10.1021/acs.analchem.6b01265.

    Article  CAS  PubMed  Google Scholar 

  11. Irkham, Watanabe T, Fiorani A, Valenti G, Paolucci F, Einaga Y. Co-reactant-on-demand ECL: electrogenerated chemiluminescence by the in situ production of S2O82– at boron-doped diamond electrodes. J Am Chem Soc. 2016;138:15636–41. https://doi.org/10.1021/jacs.6b09020.

    Article  CAS  PubMed  Google Scholar 

  12. Liu X, Shi L, Li H, Niu W, Xu G. Tris(2,2′-bipyridyl)ruthenium(II) electrochemiluminescent detection of coreactants containing aromatic diol group by the interaction between diol and borate anion. Electrochem Commun. 2007;9:2666–70. https://doi.org/10.1016/j.elecom.2007.08.017.

    Article  CAS  Google Scholar 

  13. Kitte SA, Wang C, Li S, Zholudov Y, Qi L, Li J, et al. Electrogenerated chemiluminescence of tris(2,2′-bipyridine)ruthenium(II) using N-(3-aminopropyl)diethanolamine as coreactant. Anal Bioanal Chem. 2016;408:7059–65. https://doi.org/10.1007/s00216-016-9409-z.

    Article  CAS  PubMed  Google Scholar 

  14. Lin MS, Wang JS, Lai CH. Electrochemiluminescent determination of nicotine based on tri(2,2′-bipyridyl) ruthenium (II) complex through flow injection analysis. Electrochim Acta. 2008;53:7775–80. https://doi.org/10.1016/j.electacta.2008.05.057.

    Article  CAS  Google Scholar 

  15. Zhou X, Zhu D, Liao Y, Liu W, Liu H, Ma Z, et al. Synthesis, labeling and bioanalytical applications of a tris(2,2′-bipyridyl)ruthenium(II)-based electrochemiluminescence probe. Nat Protoc. 2014;9:1146. https://doi.org/10.1038/nprot.2014.060. https://www.nature.com/articles/nprot.2014.060#supplementary-information

  16. Chen L, Huang D, Ren S, Chi Y, Chen G. Carbon dioxide gas sensor based on ionic liquid-induced electrochemiluminescence. Anal Chem. 2011;83(17):6862–7. https://doi.org/10.1021/ac201067u.

    Article  CAS  PubMed  Google Scholar 

  17. Liu HX, Zhou XM, Shen Q, Xing D. Paper-based electrochemiluminescence sensor for highly sensitive detection of amyloid-β oligomerization: toward potential diagnosis of Alzheimer’s disease. Theranostics. 2018;8(8):2289–99. https://doi.org/10.7150/thno.23483.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dojchinov G. Ethyl formate for farm stored grains. Pestic Outlook. 2003;14:241–2. https://doi.org/10.1039/B314849C.

    Article  CAS  Google Scholar 

  19. Lindinger C, Pollien P, de Vos RCH, Tikunov Y, Hageman JA, Lambot C, et al. Identification of ethyl formate as a quality marker of the fermented off-note in coffee by a nontargeted chemometric approach. J Agric Food Chem. 2009;57:9972–8. https://doi.org/10.1021/jf901673d.

    Article  CAS  PubMed  Google Scholar 

  20. Charles-Bernard M, Kraehenbuehl K, Rytz A, Roberts DD. Interactions between volatile and nonvolatile coffee components. 1. Screening of nonvolatile components. J Agric Food Chem. 2005;53:4417–25. https://doi.org/10.1021/jf048021q.

    Article  CAS  PubMed  Google Scholar 

  21. Gibson HW. Chemistry of formic acid and its simple derivatives. Chem Rev. 1969;69:673–92. https://doi.org/10.1021/cr60261a005.

    Article  CAS  Google Scholar 

  22. Amoore JE, Hautala E. Odor as an ald to chemical safety: odor thresholds compared with threshold limit values and volatilities for 214 industrial chemicals in air and water dilution. J Appl Toxicol. 1983;3:272–90. https://doi.org/10.1002/jat.2550030603.

    Article  CAS  PubMed  Google Scholar 

  23. Opdyke DLJ. Ethyl formate. Food Cosm Toxicol. 1978;16:737–9. https://doi.org/10.1016/S0015-6264(78)80095-9.

    Article  CAS  Google Scholar 

  24. Netherlands HCot. Health-based Reassessment of Administrative Occupational Exposure Limits. Committee on Updating of Occupational Exposure Limits. Ethyl formate, vol 2000/15OSH/033. Health Council of the Netherlands, The Hague; 2002.

  25. Desmarchelier JM, Johnston FM, Vu LT. Ethyl formate, formic acid and ethanol in air, wheat, barley and sultanas: analysis of natural levels and fumigant residues. Pestic Sci. 1999;55(8):815–24. https://doi.org/10.1002/(SICI)1096-9063(199908)55:8<815::AID-PS22>3.0.CO;2-4.

    Article  CAS  Google Scholar 

  26. Otte X, Lejeune R, Thunus L. Fourier transform infrared spectrometry (FTIR) for qualitative and quantitative analysis of azodicarboxamide and its potential impurities. Anal Chim Acta. 1997;355(1):7–13. https://doi.org/10.1016/S0003-2670(97)81606-6.

    Article  CAS  Google Scholar 

  27. Vu LT, Ren YL. Natural levels of ethyl formate in stored grains determined using an improved method of analysis. J Stored Prod Res. 2004;40(1):77–85. https://doi.org/10.1016/S0022-474X(02)00079-6.

    Article  CAS  Google Scholar 

  28. Han S, Niu W, Li H, Hu L, Yuan Y, Xu G. Effect of hydroxyl and amino groups on electrochemiluminescence activity of tertiary amines at low tris(2,2′-bipyridyl)ruthenium(II) concentrations. Talanta. 2010;81:44–7. https://doi.org/10.1016/j.talanta.2009.11.037.

    Article  CAS  PubMed  Google Scholar 

  29. Miao W, Choi J-P, Bard AJ. Electrogenerated chemiluminescence 69: the tris(2,2′-bipyridine)ruthenium(II), (Ru(bpy)3 2+)/tri-n-propylamine (TPrA) system revisited: a new route involving TPrA•+ cation radicals. J Am Chem Soc. 2002;124:14478–85. https://doi.org/10.1021/ja027532v.

    Article  CAS  PubMed  Google Scholar 

  30. Metera KL, Hänni KD, Zhou G, Nayak MK, Bazzi HS, Juncker D, et al. Luminescent iridium(III)-containing block copolymers: self-assembly into biotin-labeled micelles for biodetection assays. ACS Macro Lett. 2012;1:954–9. https://doi.org/10.1021/mz3001644.

    Article  CAS  Google Scholar 

  31. Forster RJ, Bertoncello P, Keyes TE. Electrogenerated chemiluminescence. Annu Rev Anal Chem. 2009;2:359–85. https://doi.org/10.1146/annurev-anchem-060908-155305.

    Article  CAS  Google Scholar 

  32. Sun JR, Gao WY, Qi LM, Song YF, Hui P, Liu ZY, et al. Detection of 1,3-dihydroxyacetone by tris(2,2′-bipyridine)ruthenium(II) electrochemiluminescence. Anal Bioanal Chem. 2018;410:2315–20. https://doi.org/10.1007/s00216-017-0833-5.

    Article  CAS  PubMed  Google Scholar 

  33. Hui P, Zhang L, Gao WY, Zuo HJ, Qi LM, Kitte SA, et al. Detection of sodium dehydroacetate by tris(2,2′-bipyridine)ruthenium(II) electrochemiluminescence. ChemElectroChem. 2017;4:1702–7. https://doi.org/10.1002/celc.201600623.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was kindly sponsored by the National Natural Science Foundation of China [Nos.21505128 & 21675148], Ministry of Science and technology of the People’s Republic of China [No. 2016YFA0201300], the Chinese Academy of Sciences (CAS)-the Academy of Sciences for the Developing World (TWAS) President’s Fellowship Programme, and the Chinese Academy of Sciences (CAS) President’s International Fellowship Initiative (PIFI).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongyuan Liu or Guobao Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict to interest.

Additional information

Published in the topical collection New Insights into Analytical Science in China with guest editors Lihua Zhang, Hua Cui, and Qiankun Zhuang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fereja, T.H., Kitte, S.A., Snizhko, D. et al. Tris(2,2′-bipyridyl)ruthenium(II) electrochemiluminescent determination of ethyl formate. Anal Bioanal Chem 410, 6779–6785 (2018). https://doi.org/10.1007/s00216-018-1275-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1275-4

Keywords

Navigation