Skip to main content

Advertisement

Log in

Comprehensive targeted and non-targeted lipidomics analyses in failing and non-failing heart

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Myocardial infarction (MI) and subsequent progressive heart failure pathology is the major cause of death worldwide; however, the mechanism of this pathology remains unclear. The present work aimed at testing the hypothesis whether the inflammatory response is superimposed with the formation of bioactive lipid resolving molecules at the site of the injured myocardium in acute heart failure pathology post-MI. In this view, we used a robust permanent coronary ligation model to induce MI, leading to decreased contractility index with marked wall thinning and necrosis of the infarcted left ventricle. Then, we applied mass spectrometry imaging (MSI) in positive and negative ionization modes to characterize the spatial distribution of left ventricle lipids in the infarcted myocardium post-MI. After micro-extraction, liquid chromatography coupled to tandem mass spectrometry was used to confirm the structures of the imaged lipids. Statistical tools such as principal component analysis were used to establish a comprehensive visualization of lipid profile changes in MI and no-MI hearts. Resolving bioactive molecules such as resolvin (Rv) D1, RvD5, RvE3, 17-HDHA, LXA4, and 18-HEPE were detected in negative ion mode MSI, whereas phosphatidyl cholines (PC) and oxidized derivatives thereof were detected in positive ion mode. MSI-based analysis demonstrated a significant increase in resolvin bioactive lipids with comprehensive lipid remodeling at the site of infarction. These results clearly indicate that infarcted myocardium is the primary location of inflammation-resolution pathomechanics which is critical for resolution of inflammation and heart failure pathophysiology.

Applied scheme to determine comprehensive lipidomics in failing and non-failing heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AA:

Arachidonic acid

AUC:

Area under curve

DHA:

Docosahexaenoic acid

EPA:

Eicosapentaenoic acid

FA:

Fatty acids

HDHA:

Hydroxydocosahexaenoic acid

HEPE:

Hydroxyeicosapentaenoic acid

HETEs:

Hydroperoxyeicosatetraenoic acid

LC-MS/MS:

Liquid chromatography-mass spectrometry

LMs:

Lipid mediators

LTs:

Leukotrienes

LV:

Left ventricle

LX:

Lipoxins

MALDI:

Matrix-assisted laser desorption ionization

MI:

Myocardial infarction

MRM:

Multiple reaction monitoring

MSI:

Molecular mass spectrometry imaging

PCA:

Principal component analysis

PL:

Phospholipids

Rv:

Resolvins

TX:

Thromboxane

References

  1. Ponikowski P, Anker SD, AlHabib KF, Cowie MR, Force TL, Hu S, et al. Heart failure: preventing disease and death worldwide. ESC Heart Failure. 2014;1(1):4–25.

    Article  Google Scholar 

  2. Ziaeian B, Fonarow GC. Epidemiology and aetiology of heart failure. Nat Rev Cardiol. 2016;13(6):368–78.

    Article  Google Scholar 

  3. Ertl G, Frantz S. Healing after myocardial infarction. Cardiovasc Res. 2005;66(1):22–32.

    Article  CAS  Google Scholar 

  4. Grey AC, Gelasco AK, Section J, Moreno-Rodriguez RA, Krug EL, Schey KL. Molecular morphology of the chick heart visualized by MALDI imaging mass spectrometry. Anat Rec (Hoboken, NJ : 2007). 2010;293(5):821–8.

    Article  CAS  Google Scholar 

  5. Trim PJ, Henson CM, Avery JL, McEwen A, Snel MF, Claude E, et al. Matrix-assisted laser desorption/ionization-ion mobility separation-mass spectrometry imaging of vinblastine in whole body tissue sections. Anal Chem. 2008;80(22):8628–34.

    Article  CAS  Google Scholar 

  6. Gessel MM, Norris JL, Caprioli RM. MALDI imaging mass spectrometry: spatial molecular analysis to enable a new age of discovery. J Proteome. 2014;107:71–82.

    Article  CAS  Google Scholar 

  7. Jones EE, Powers TW, Neely BA, Cazares LH, Troyer DA, Parker AS, et al. MALDI imaging mass spectrometry profiling of proteins and lipids in clear cell renal cell carcinoma. Proteomics. 2014;14(7–8):924–35.

    Article  CAS  Google Scholar 

  8. De Sio G, Smith AJ, Galli M, Garancini M, Chinello C, Bono F, et al. A MALDI-mass spectrometry imaging method applicable to different formalin-fixed paraffin-embedded human tissues. Mol BioSyst. 2015;11(6):1507–14.

    Article  Google Scholar 

  9. Diehl HC, Beine B, Elm J, Trede D, Ahrens M, Eisenacher M, et al. The challenge of on-tissue digestion for MALDI MSI—a comparison of different protocols to improve imaging experiments. Anal Bioanal Chem. 2015;407(8):2223–43.

    Article  CAS  Google Scholar 

  10. Angel PM, Spraggins JM, Baldwin HS, Caprioli R. Enhanced sensitivity for high spatial resolution lipid analysis by negative ion mode matrix assisted laser desorption ionization imaging mass spectrometry. Anal Chem. 2012;84(3):1557–64.

    Article  CAS  Google Scholar 

  11. Angel PM, Bayoumi AS, Hinton RB, Ru Su Y, Bichell D, Mayer JE, et al. MALDI imaging mass spectrometry as a lipidomic approach to heart valve research. J Heart Valve Dis. 2016;25(2):240–52.

    Google Scholar 

  12. Steurer S, Singer JM, Rink M, Chun F, Dahlem R, Simon R, et al. MALDI imaging-based identification of prognostically relevant signals in bladder cancer using large-scale tissue microarrays. Urol Oncol. 2014;32(8):1225–33.

    Article  Google Scholar 

  13. Kofeler HC, Fauland A, Rechberger GN, Trotzmuller M. Mass spectrometry based lipidomics: an overview of technological platforms. Meta. 2012;2(1):19–38.

    Google Scholar 

  14. Bure C, Ayciriex S, Testet E, Schmitter JM. A single run LC-MS/MS method for phospholipidomics. Anal Bioanal Chem. 2013;405(1):203–13.

    Article  CAS  Google Scholar 

  15. Ma Y, Halade GV, Zhang J, Ramirez TA, Levin D, Voorhees A, et al. Matrix metalloproteinase-28 deletion exacerbates cardiac dysfunction and rupture after myocardial infarction in mice by inhibiting M2 macrophage activation. Cir Res. 2013;112(4):675–88.

    Article  CAS  Google Scholar 

  16. Lopez EF, Kabarowski JH, Ingle KA, Kain V, Barnes S, Crossman DK, et al. Obesity superimposed on aging magnifies inflammation and delays the resolving response after myocardial infarction. Am J Physiol Heart Circ Physiol. 2015;308(4):H269–80.

    Article  CAS  Google Scholar 

  17. Halade GV, Kain V, Ingle KA (2017) Heart functional and structural compendium of cardiosplenic and cardiorenal networks in acute and chronic heart failure pathology. Am J Physiol Heart Circ Physiol. :ajpheart 00528 02017.

  18. Halade GV, Kain V, Black LM, Prabhu SD, Ingle KA. Aging dysregulates D- and E-series resolvins to modulate cardiosplenic and cardiorenal network following myocardial infarction. Aging. 2016;8(11):2611–34.

    Article  Google Scholar 

  19. Halade GV, Ma Y, Ramirez TA, Zhang J, Dai Q, Hensler JG, et al. Reduced BDNF attenuates inflammation and angiogenesis to improve survival and cardiac function following myocardial infarction in mice. Am J Physiol Heart Circ Physiol. 2013;305(12):H1830–42.

    Article  CAS  Google Scholar 

  20. Heaberlin JR, Ma Y, Zhang J, Ahuja SS, Lindsey ML, Halade GV. Obese and diabetic KKAy mice show increased mortality but improved cardiac function following myocardial infarction. Cardiovasc Pathol : the official journal of the Society for Cardiovascular Pathology. 2013;22(6):481–7.

    Article  CAS  Google Scholar 

  21. Ejsing CS, Sampaio JL, Surendranath V, Duchoslav E, Ekroos K, Klemm RW, et al. Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc Natl Acad Sci U S A. 2009;106(7):2136–41.

    Article  CAS  Google Scholar 

  22. Colas RA, Shinohara M, Dalli J, Chiang N, Serhan CN. Identification and signature profiles for pro-resolving and inflammatory lipid mediators in human tissue. Am J Physiol Cell Physiol. 2014;307(1):C39–54.

    Article  CAS  Google Scholar 

  23. Thiele H, Heldmann S, Trede D, Strehlow J, Wirtz S, Dreher W, et al. 2D and 3D MALDI-imaging: conceptual strategies for visualization and data mining. Biochim Biophys Acta. 2014;1844(1 Pt A):117–37.

    Article  CAS  Google Scholar 

  24. Serhan CN, Chiang N, Van Dyke TE. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol. 2008;8(5):349–61.

    Article  CAS  Google Scholar 

  25. Patterson NH, Doonan RJ, Daskalopoulou SS, Dufresne M, Lenglet S, Montecucco F, et al. Three-dimensional imaging MS of lipids in atherosclerotic plaques: open-source methods for reconstruction and analysis. Proteomics. 2016;16(11–12):1642–51.

    Article  CAS  Google Scholar 

  26. Halade GV, Kain V, Ingle KA, Prabhu SD. Interaction of 12/15-lipoxygenase with fatty acids alters the leukocyte kinetics leading to improved postmyocardial infarction healing. Am J Physiol Heart Circ Physiol. 2017;313(1):H89–H102.

    Article  Google Scholar 

  27. Halade GV, Kain V. Obesity and cardiometabolic defects in heart failure pathology. Compr Physiol. 2017;7(4):1463–77.

    Article  Google Scholar 

  28. Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature. 2014;510(7503):92–101.

    Article  CAS  Google Scholar 

  29. Halade GV, Rahman MM, Bhattacharya A, Barnes JL, Chandrasekar B, Fernandes G. Docosahexaenoic acid-enriched fish oil attenuates kidney disease and prolongs median and maximal life span of autoimmune lupus-prone mice. J Immunol. 2010;184(9):5280–6.

    Article  CAS  Google Scholar 

  30. Halade GV, Jin YF, Lindsey ML. Roles of saturated vs. polyunsaturated fat in heart failure survival: not all fats are created equal. Cardiovasc Res. 2012;93(1):4–5. https://doi.org/10.1093/cvr/cvr298.

    Article  CAS  Google Scholar 

  31. Menger RF, Stutts WL, Anbukumar DS, Bowden JA, Ford DA, Yost RA. MALDI mass spectrometric imaging of cardiac tissue following myocardial infarction in a rat coronary artery ligation model. Anal Chem. 2012;84(2):1117–25.

    Article  CAS  Google Scholar 

  32. Fruhwirth GO, Loidl A, Hermetter A. Oxidized phospholipids: from molecular properties to disease. Biochim Biophys Acta. 2007;1772(7):718–36.

    Article  CAS  Google Scholar 

  33. Leitinger N. Oxidized phospholipids as triggers of inflammation in atherosclerosis. Mol Nutr Food Res. 2005;49(11):1063–71.

    Article  CAS  Google Scholar 

  34. Niki E, Yoshida Y, Saito Y, Noguchi N. Lipid peroxidation: mechanisms, inhibition, and biological effects. Biochem Biophys Res Commun. 2005;338(1):668–76.

    Article  CAS  Google Scholar 

  35. Spickett CM, Dever G. Studies of phospholipid oxidation by electrospray mass spectrometry: from analysis in cells to biological effects. BioFactors (Oxford, England). 2005;24(1–4):17–31.

    Article  CAS  Google Scholar 

  36. Subbanagounder G, Deng Y, Borromeo C, Dooley AN, Berliner JA, Salomon RG. Hydroxy alkenal phospholipids regulate inflammatory functions of endothelial cells. Vasc Pharmacol. 2002;38(4):201–9.

    Article  CAS  Google Scholar 

  37. Erridge C, Spickett CM. Oxidised phospholipid regulation of Toll-like receptor signalling. Redox Rep : Communications in Free Radical Research. 2007;12(1):76–80.

    Article  CAS  Google Scholar 

  38. Bochkov VN, Leitinger N. Anti-inflammatory properties of lipid oxidation products. J Mol Med (Berlin, Germany). 2003;81(10):613–26.

    Article  CAS  Google Scholar 

  39. Spiteller G. Peroxyl radicals: inductors of neurodegenerative and other inflammatory diseases. Their origin and how they transform cholesterol, phospholipids, plasmalogens, polyunsaturated fatty acids, sugars, and proteins into deleterious products. Free Radic Biol Med. 2006;41(3):362–87.

    Article  CAS  Google Scholar 

  40. Rysman E, Brusselmans K, Scheys K, Timmermans L, Derua R, Munck S, et al. De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Res. 2010;70(20):8117–26.

    Article  CAS  Google Scholar 

  41. Deigner HP, Hermetter A. Oxidized phospholipids: emerging lipid mediators in pathophysiology. Curr Opin Lipidol. 2008;19(3):289–94.

    Article  CAS  Google Scholar 

  42. Schneider C, Porter NA, Brash AR. Routes to 4-hydroxynonenal: fundamental issues in the mechanisms of lipid peroxidation. J Biol Chem. 2008;283(23):15539–43.

    Article  CAS  Google Scholar 

  43. Tourki B, Halade G. Leukocyte diversity in resolving and nonresolving mechanisms of cardiac remodeling. FASEB J : official publication of the Federation of American Societies for Experimental Biology. 2017;31(10):4226–39.

    Article  Google Scholar 

  44. Kain V, Prabhu SD, Halade GV. Inflammation revisited: inflammation versus resolution of inflammation following myocardial infarction. Basic Res Cardiol. 2014;109(6):444.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from National Institutes of Health [AT006704 and HL132989] and The University of Alabama at Birmingham (UAB) Pittman scholar award to GVH, American Heart Association postdoctoral fellowship POST31000008 to VK, and Idex program from University of Bordeaux, France, to BF.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ganesh V. Halade or Boutayna Rhourri-Frih.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 707 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halade, G.V., Dorbane, A., Ingle, K.A. et al. Comprehensive targeted and non-targeted lipidomics analyses in failing and non-failing heart. Anal Bioanal Chem 410, 1965–1976 (2018). https://doi.org/10.1007/s00216-018-0863-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-0863-7

Keywords

Navigation