Skip to main content
Log in

VS2 quantum dot label-free fluorescent probe for sensitive and selective detection of ALP

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

As an essential enzyme highly associated with various human diseases, alkaline phosphatase (ALP) plays an important role in human tissues. Developing new materials and strategies for monitoring ALP is thus important. We have developed a novel label-free fluorescent sensing system for ALP activity that is based on the “turn-on” fluorescence of VS2 quantum dots. The fluorescence of VS2 quantum dots quenched by Fe3+ can be restored by ascorbic acid, which is generated by hydrolysis of l-ascorbic acid 2-phosphate catalyzed by ALP. Rapid, convenient, and sensitive detection of ALP is achieved in the range from 3 to 1000 U/L (R 2 =0.9985), with a detection limit of 0.27 U/L. The proposed sensor exhibits excellent selectivity for ALP compared with other enzymes and proteins, such as glucose oxidase, lysozyme, trypsin, human serum albumin, and bovine serum albumin. The reliability for ALP determination in human serum plasma has been demonstrated with satisfactory recovery, revealing promising application in clinical diagnosis and biomedical research.

Hydrothermally synthesized VS2 quantum dots serving as a novel turn-on fluorescent probe for detection of alkaline phosphatase (ALP) activity. AA l-ascorbic acid, AAP l-ascorbic acid 2-phosphate, NAC N-acetyl-l-cysteine

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu JM, Cui ML, Wang XX, Lin LP, Jiao L, Zhang LH, et al. A highly selective affinity adsorption imprinting phosphorescence sensor for determination of trace alkaline phosphatase and prediction of human diseases. Sens Actuators B. 2013;186:521–7.

    Article  CAS  Google Scholar 

  2. Wu NJ, Lan JB, Yan LP, You JS. A sensitive colorimetric and fluorescent sensor based on imidazolium-functionalized squaraines for the detection of GTP and alkaline phosphatase in aqueous solution. Chem Commun. 2014;50:4438–41.

    Article  CAS  Google Scholar 

  3. Hu ZZ, Chen J, Li YX, Wang Y, Zhang QF, Hussain E, et al. Nucleic acid-controlled quantum dots aggregation: a label-free fluorescence turn-on strategy for alkaline phosphatase detection. Talanta. 2017;169:64–9.

    Article  CAS  Google Scholar 

  4. Qu FL, Pei HM, Kong RM, Zhu SY, Xia L. Novel turn-on fluorescent detection of alkaline phosphatase based on green synthesized carbon dots and MnO2 nanosheets. Talanta. 2017;165:136–42.

    Article  CAS  Google Scholar 

  5. Lorente JA, Valenzuela H, Morote J, Gelabert A. Serum bone alkaline phosphatase levels enhance the clinical utility of prostate specific antigen in the staging of newly diagnosed prostate cancer patients. Eur J Nucl Med. 1999;26:625–32.

    Article  CAS  Google Scholar 

  6. Dong L, Miao QQ, Hai ZJ, Yuan Y, Liang GL. Enzymatic hydrogelation-induced fluorescence turn-off for sensing alkaline phosphatase in vitro and in living cells. Anal Chem. 2015;87:6475–8.

    Article  CAS  Google Scholar 

  7. Ooi K, Shiraki K, Morishita Y, Nobori T. High-molecular intestinal alkaline phosphatase in chronic liver diseases. J Clin Lab Anal. 2007;21:133–9.

    Article  CAS  Google Scholar 

  8. Diaz AN, Sanchez FG, Ramos MC, Torijas MC. Horseradish peroxidase sol-gel immobilized for chemiluminescence measurements of alkaline-phosphatase activity. Sens Actuators B. 2002;82:176–9.

    Article  CAS  Google Scholar 

  9. Miao P, Ning LM, Li XX, Shu YQ, Li GX. An electrochemical alkaline phosphatase biosensor fabricated with two DNA probes coupled with lambda exonuclease. Biosens Bioelectron. 2011;27:178–82.

    Article  CAS  Google Scholar 

  10. Choi Y, Ho NH, Tung CH. Sensing phosphatase activity by using gold nanoparticles. Angew Chem Int Ed. 2007;46:707–9.

    Article  CAS  Google Scholar 

  11. Song ZG, Kwok RTK, Zhao EG, He ZK, Hong YN, Lam JWY, et al. A ratiometric fluorescent probe based on ESIPT and AIE processes for alkaline phosphatase activity assay and visualization in living cells. ACS Appl Mater Interfaces. 2014;6:17245–54.

    Article  CAS  Google Scholar 

  12. Zhang LL, Zhao JJ, Duan M, Zhang H, Jiang JH, Yu RQ. Inhibition of dsDNA-templated copper nanoparticles by pyrophosphate as a label-free fluorescent strategy for alkaline phosphatase assay. Anal Chem. 2013;85:3797–801.

    Article  CAS  Google Scholar 

  13. Chen L, Yang GC, Wu P, Cai CX. Real-time fluorescence assay of alkaline phosphatase in living cells using boron-doped graphene quantum dots as fluorophores. Biosens Bioelectron. 2017;96:294–9.

    Article  CAS  Google Scholar 

  14. Xiang X, Zhang Z, Han L, Huang FH, Zheng MM, Tang H, et al. Fluorescence switching sensor for sensitive detection of sinapine using carbon quantum dots. Sens Actuators B. 2017;241:482–8.

    Article  CAS  Google Scholar 

  15. Xu Q, Wei HP, Hu XY. Glutathione detection based on ZnS quantum-dot-based off-on fluorescent probe. Chin J Anal Chem. 2013;41(7):1102–6.

    Article  Google Scholar 

  16. Liu XL, Jiang H, Ye J, Zhao CQ, Gao SP, Wu CY, et al. Nitrogen-doped carbon quantum dot stabilized magnetic iron oxide nanoprobe for fluorescence, magnetic resonance, and computed tomography triple-modal in vivo bioimaging. Adv Funct Mater. 2016;26:8694–706.

    Article  CAS  Google Scholar 

  17. Akshath US, Shubha LR, Bhatt P, Thakur MS. Quantum dots as optical labels for ultrasensitive detection of polyphenols. Biosens Bioelectron. 2014;57:317–23.

    Article  CAS  Google Scholar 

  18. Xiang X, Shi JB, Huang FH, Zheng MM, Deng QC. Quantum dots-based label-free fluorescence sensor for sensitive and non-enzymatic detection of caffeic acid. Talanta. 2015;141:182–7.

    Article  CAS  Google Scholar 

  19. Fu X, Ilanchezhiyan P, Kumar GM, Cho HD, Zhang L, Chan AS, et al. Tunable UV-visible absorption of SnS2 layered quantum dots produced by liquid phase exfoliation. Nanoscale. 2017;9:1820–6.

    Article  CAS  Google Scholar 

  20. Jiang H. Electronic band structures of molybdenum and tungsten dichalcogenides by the GW approach. J Phys Chem C. 2012;116:7664–71.

    Article  CAS  Google Scholar 

  21. Kalantar-zadeh K, Ou JZ, Daeneke T, Strano MS, Pumera M, Gras SL. Two-dimensional transition metal dichalcogenides in biosystems. Adv Funct Mater. 2015;25:5086–99.

    Article  CAS  Google Scholar 

  22. Raza F, Park JH, Lee HR, Kim HI, Jeon SJ, Kim JH. Visible-light-driven oxidative coupling reactions of amines by photoactive WS2 nanosheets. ACS Catal. 2016;6:2754–9.

    Article  CAS  Google Scholar 

  23. Mahler B, Hoepfner V, Liao K, Ozin GA. Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: applications for photocatalytic hydrogen evolution. J Am Chem Soc. 2014;136:14121–7.

    Article  CAS  Google Scholar 

  24. Chhowalla M, Shin HS, Eda G, Li LJ, Loh KP, Zhang H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem. 2013;5:263–75.

    Article  Google Scholar 

  25. Lin LX, Xu YX, Zhang SW, Ross IM, Ong ACM, Allwood DA. Fabrication of luminescent monolayered tungsten dichalcogenides quantum dots with giant spin-valley coupling. ACS Nano. 2013;7:8214–23.

    Article  CAS  Google Scholar 

  26. Huang H, Du CC, Shi HY, Feng X, Li J, Tan YL, et al. Water-soluble monolayer molybdenum disulfide quantum dots with upconversion fluorescence. Part Part Syst Charact. 2015;32:72–9.

    Article  CAS  Google Scholar 

  27. Lee C, Wei XD, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321:385–8.

    Article  CAS  Google Scholar 

  28. Feng J, Sun X, Wu CZ, Peng LL, Lin CW, Hu SL, et al. Metallic few-layered VS2 ultrathin nanosheets: high two-dimensional conductivity for in-plane supercapacitors. J Am Chem Soc. 2011;133:17832–8.

    Article  CAS  Google Scholar 

  29. Liao JY, Manthiram A. High-performance Na2Ti2O5 nanowire arrays coated with VS2 nanosheets for sodium-ion storage. Nano Energy. 2015;18:20–7.

    Article  CAS  Google Scholar 

  30. Fang WY, Zhao HB, Xie YP, Fang JH, Xu JQ, Chen ZW. Facile hydrothermal synthesis of VS2/graphene nanocomposites with superior high-rate capability as lithium-ion battery cathodes. ACS Appl Mater Interfaces. 2015;7:13044–52.

    Article  CAS  Google Scholar 

  31. Du CC, Shang AQ, Shang MX, Ma XH. Water-soluble VS2 quantum dots with unusual fluorescence for biosensing. Sens Actuators B. 2017; https://doi.org/10.1016/j.snb.2017.08.070.

  32. Yan YH, Zhang CL, Gu W, Ding CP, Li XC, Xian YZ. Facile synthesis of water-soluble WS2 quantum dots for turn-on fluorescent measurement of lipoic acid. J Phys Chem C. 2016;120:12170–7.

    Article  CAS  Google Scholar 

  33. Gao Z, Wang LB, Su RX, Huang RL, Qi W, He ZM. A carbon dot-based “off-on” fluorescent probe for highly selective and sensitive detection of phytic acid. Biosens Bioelectron. 2015;70:232–8.

    Article  CAS  Google Scholar 

  34. Xu Q, Pu P, Zhao JG, Dong CB, Gao C, Chen YS, et al. Preparation of highly photoluminescent sulfur-doped carbon dots for Fe(III) detection. J Mater Chem A. 2015;3:542–6.

    Article  CAS  Google Scholar 

  35. Hu Q, He MH, Mei YQ, Feng WJ, Jing S, Kong JM, et al. Sensitive and selective colorimetric assay of alkaline phosphatase activity with Cu(II)-phenanthroline complex. Talanta. 2017;163:146–52.

    Article  CAS  Google Scholar 

  36. Liu YQ, Xiong EH, Li XY, Li JJ, Zhang XH, Chen JH. Sensitive electrochemical assay of alkaline phosphatase activity based on TdT-mediated hemin/G-quadruplex DNAzyme nanowires for signal amplification. Biosens Bioelectron. 2017;87:970–5.

    Article  CAS  Google Scholar 

  37. Ma JL, Yin BC, Wu X, Ye BC. Copper-mediated DNA-scaffolded silver nanocluster on-off switch for detection of pyrophosphate and alkaline phosphates. Anal Chem. 2016;88:9219–25.

    Article  CAS  Google Scholar 

  38. Tang C, Qian ZS, Huang YY, Xu JM, Ao H, Zhao MZ, et al. A fluorometric assay for alkaline phosphatase activity based on β-cyclodextrin-modified carbon quantum dots through host-guest recognition. Biosens Bioelectron. 2016;83:274–80.

    Article  CAS  Google Scholar 

  39. Hu YL, Geng X, Zhang L, Huang ZM, Ge J, Li ZH. Nitrogen-doped carbon dots mediated fluorescent on-off assay for rapid and highly sensitive pyrophosphate and alkaline phosphatase detection. Sci Rep. 2017;7:5849. https://doi.org/10.1038/S41598-017-06356-Z.

    Article  Google Scholar 

  40. Zhang YY, Li YX, Zhang CY, Zhang QF, Huang XA, Yang MD, et al. Fluorescence turn-on detection of alkaline phosphatase activity based on controlled release of PEI-capped Cu nanoclusters from MnO2 nanosheets. Anal Bioanal Chem. 2017;409(20):4771–8.

    Article  CAS  Google Scholar 

  41. Liu JJ, Tang DS, Chen ZT, Yan XM, Zhong Z, Kang LT, et al. Chemical redox modulated fluorescence of nitrogen-doped graphene quantum dots for probing the activity of alkaline phosphatase. Biosens Bioelectron. 2017;94:271–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (no. 21475051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbo Song.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

This study was conducted in accordance with the principles of the Declaration of Helsinki, and was approved by the Ethical Committee of the First Hospital of Jilin University. All blood samples were from healthy persons with their informed consent.

Human and animal rights

No violation of human or animal rights occurred during this investigation.

Compliance with ethical standards

ESM 1

(PDF 167 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Du, C., Shang, M. et al. VS2 quantum dot label-free fluorescent probe for sensitive and selective detection of ALP. Anal Bioanal Chem 410, 1417–1426 (2018). https://doi.org/10.1007/s00216-017-0778-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0778-8

Keywords

Navigation