Dore MHI. Climate change and changes in global precipitation patterns: what do we know? Environ Int. 2005;31(8):1167–81.
Article
Google Scholar
Haynes RJ, Naidu R. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review. Nutr Cycl Agroecosyst. 1998;51(2):123–37.
Article
Google Scholar
Khaleel R, Reddy K, Overcash M. Changes in soil physical properties due to organic waste applications: a review. J Environ Qual. 1981;10(2):133–41.
Article
Google Scholar
Jeffery S, Verheijen FGA, van der Velde M, Bastos AC. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ. 2011;144(1):175–87.
Article
Google Scholar
MacCarthy P. The principles of humic substances: an introduction to the first principle. In: Ghabbour EA, Davies G, editors. Humic substances: structures, models and functions. Cambridge: The Royal Society of Chemistry, 2001. pp. 19–30.
Kögel-Knabner I. Analytical approaches for characterizing soil organic matter. Org Geochem. 2000;31(7–8):609–25.
Article
Google Scholar
Balesdent JM, Mariotti A. Measurement of soil organic matter turn-over using 13C natural abundance. In: Boutton T, Yamasaki SI, editors. Mass spectrometry of soils. Boca Raton: CRC press, 1996. pp. 83–111.
Steinbeiss S, Gleixner G, Antonietti M. Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol Biochem. 2009;41(6):1301–10.
CAS
Article
Google Scholar
Mueller CW, Weber PK, Kilburn MR, Hoeschen C, Kleber M, Pett-Ridge J. Advances in the analysis of biogeochemical interfaces: NanoSIMS to investigate soil microenvironments. Adv Agron. 2013;121(1):1–46.
CAS
Google Scholar
Ribeiro-Soares J, Cançado LG, Falcão NPS, Martins Ferreira EH, Achete CA, Jorio A. The use of Raman spectroscopy to characterize the carbon materials found in Amazonian anthrosoils. J Raman Spectrosc. 2013;44(2):283–9.
CAS
Article
Google Scholar
Yamauchi S, Kurimoto Y. Raman spectroscopic study on pyrolyzed wood and bark of Japanese cedar: temperature dependence of Raman parameters. J Wood Sci. 2003;49(3):235–40.
CAS
Article
Google Scholar
Francioso O, Sanchez-Cortes S, Corrado G, Gioacchini P, Ciavatta C. Characterization of soil organic carbon in long-term amendment trials. Spectrosc Lett. 2005;38(3):283–91.
CAS
Article
Google Scholar
Yang Y-h, Wang T. Fourier transform Raman spectroscopic characterization of humic substances. Vib Spectrosc. 1997;14(1):105–12.
Article
Google Scholar
Paetsch L, Mueller CW, Rumpel C, Angst Š, Wiesheu AC, GirardinC et al. A multi-technique approach to assess the fate of biochar in soil and to quantify its effect on soil organic matter composition. Org Geochem. 2017; in press, doi: 10.1016/j.orggeochem.2017.06.012.
Xing Z, Du C, Zeng Y, Ma F, Zhou J. Characterizing typical farmland soils in China using Raman spectroscopy. Geoderma. 2016;268:147–55.
CAS
Article
Google Scholar
Xing Z, Du C, Tian K, Ma F, Shen Y, Zhou J. Application of FTIR-PAS and Raman spectroscopies for the determination of organic matter in farmland soils. Talanta. 2016;158:262–9.
CAS
Article
Google Scholar
Vogel C, Rivard C, Tanabe I, Adam C. Microspectroscopy—promising techniques to characterize phosphorus in soil. Commun Soil Sci Plant Anal. 2016;47(18):2088–102.
CAS
Article
Google Scholar
Vogel C, Ramsteiner M, Sekine R, Doolette A, Adam C. Characterization of phosphorus compounds in soils by deep ultra-violet (DUV) Raman microspectroscopy. J Raman Spectrosc. 2017;48(6):867–71.
Wang Y, Huang WE, Cui L, Wagner M. Single cell stable isotope probing in microbiology using Raman microspectroscopy. Curr Opin Biotechnol. 2016;41:34–42.
CAS
Article
Google Scholar
Ivleva NP, Kubryk P, Niessner R. Raman microspectroscopy, surface-enhanced Raman scattering microspectroscopy, andstable-isotope Raman microspectroscopy for biofilm characterization. Anal Bioanal Chem. 2017;409(18):4353–75
Liu L, Fan S. Isotope labeling of carbon nanotubes and formation of 12C-13C nanotube junctions. JACS. 2001;123(46):11502–3.
CAS
Article
Google Scholar
Liu Z, Li X, Tabakman SM, Jiang K, Fan S, Dai H. Multiplexed multicolor Raman imaging of live cells with isotopically modified single walled carbon nanotubes. JACS. 2008;130(41):13540–1.
CAS
Article
Google Scholar
Rümmeli MH, Löffler M, Kramberger C, Simon F, Fülöp F, Jost O, et al. Isotope-engineered single-wall carbon nanotubes; a key material for magnetic studies. J Phys Chem C. 2007;111(11):4094–8.
Article
Google Scholar
Shoushan F, Liang L, Ming L. Monitoring the growth of carbon nanotubes by carbon isotope labelling. Nanotechnology. 2003;14(10):1118.
Article
Google Scholar
Li X, Cai W, Colombo L, Ruoff RS. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 2009;9(12):4268–72.
CAS
Article
Google Scholar
Kumada K. On artificial humic acids. Soil Sci Plant Nutr. 1956;2(1):106–11.
CAS
Article
Google Scholar
Hayakawa M, Nonomura H. Efficacy of artificial humic acid as a selective nutrient in HV agar used for the isolation of soil actinomycetes. J Ferment Technol. 1987;65(6):609–16.
CAS
Article
Google Scholar
Leopold N, Lendl B. A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride. J Phys Chem B. 2003;107(24):5723–7.
CAS
Article
Google Scholar
Knauer M, Ivleva NP, Niessner R, Haisch C. Optimized surface-enhanced Raman scattering (SERS) colloids for the characterization of microorganisms. Anal Sci. 2010;26(7):761–6.
CAS
Article
Google Scholar
Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U. Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon. 2005;43(8):1731–42.
CAS
Article
Google Scholar
Deutsches Institut für Normung. DIN 32645: chemical analysis—decision limit, detection limit and determination limit under repeatability conditions—terms, methods, evaluation. 1994.
International Organization for Standardization. ISO 11843-2:2000 Capability of detection—Part 2: methodology in the linear calibration case. 2000.
Polerecky L, Adam B, Milucka J, Musat N, Vagner T, Kuypers MMM. Look@NanoSIMS—a tool for the analysis of nanoSIMS data in environmental microbiology. Environ Microbiol. 2012;14(4):1009–23.
CAS
Article
Google Scholar
McDonald-Wharry J, Manley-Harris M, Pickering K. Carbonisation of biomass-derived chars and the thermal reduction of a graphene oxide sample studied using Raman spectroscopy. Carbon. 2013;59:383–405.
CAS
Article
Google Scholar
Ferrari AC, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B. 2000;61(20):14095–107.
CAS
Article
Google Scholar
Ferrari AC, Robertson J. Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos Trans R Soc London, Ser A. 2004;362(1824):2477–512.
CAS
Article
Google Scholar