Skip to main content
Log in

Hexafluoroisopropanol-mediated cloud point extraction of organic pollutants in water with analysis by high-performance liquid chromatography

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A hexafluoroisopropanol (HFIP)-mediated cloud point extraction (CPE) system was established. A small amount of HFIP (even 1%, v/v) can dramatically reduce the cloud point of Triton X-100 (TX-100) aqueous solution (even to 1 °C) and make liquid-liquid two-phase separation (coacervate phase and aqueous phase) occur at room temperature over a wide range of TX-100 concentration (0.5∼10%, g/mL). HFIP-mediated coacervate phase has smaller volume (volume ratio is 1.8∼8.9% relative to the volume of the total solution with 1∼5% TX-100) and larger micelle aggregates (30∼80 nm in diameter) compared to temperature-induced coacervate phase (volume ratio at 2.8∼14.0%, the diameter of micelle aggregates at 5∼30 nm). HFIP-mediated CPE was coupled to high-performance liquid chromatography with ultraviolet detection (HPLC-UV) for the extraction and detection of organic pollutants in water, namely, polycyclic aromatic hydrocarbons (PAHs), fluoroquinolones (FQs), and sulfonamides (SAs) with different polarities, charges, and hydrogen-bonding properties. HFIP-mediated CPE provides much higher extraction rates (ERs) and enrichment factors (EFs) for FQs (91∼106%, 50∼59), PAHs (63∼90%, 33∼49), and SAs (26∼55%, 16∼34) compared with the temperature-induced one (ERs: 4∼8% for FQs, 25∼46% for PAHs, and 4∼37% for SAs; EFs: 1∼3 for FQs, 6∼12 for PAHs, and 8∼13 for SAs). The limit of detection ranges from 0.24 to 0.33 ng/mL for FQs, 0.04 to 0.38 ng/mL for PAHs, and 0.63 to 1.31 ng/mL for SAs. The proposed method was applied in the analysis of real water samples, and the recovery of 79.4∼110.8% and the relative standard deviation of 0.2∼16.3% were achieved for the three types of pollutants.

Schematic illustration of HFIP-mediated cloud point extraction

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tang T, Qian K, Shi T, Wang F, Li J, Cao Y. Determination of triazole fungicides in environmental water samples by high performance liquid chromatography with cloud point extraction using polyethylene glycol 600 monooleate. Anal Chim Acta. 2010;680(1):26–31.

    Article  CAS  Google Scholar 

  2. Saha A, Deb SB, Sarkar A, Saxena MK, Tomar BS. Simultaneous preconcentration of uranium and thorium in aqueous samples using cloud point extraction. RSC Adv. 2016;6(24):20109–19.

    Article  CAS  Google Scholar 

  3. Sato N, Mori M, Itabashi H. Cloud point extraction of Cu(II) using a mixture of triton X-100 and dithizone with a salting-out effect and its application to visual. Talanta. 2013;117:376–81.

    Article  CAS  Google Scholar 

  4. Mukherjee P, Padhan SK, Dash S, Patel S, Mishra BK. Clouding behaviour in surfactant systems. Adv Colloid Interf Sci. 2011;162(1):59–79.

    Article  CAS  Google Scholar 

  5. García-Blanco F, Elorza MA, Arias C, Elorza B, Gómez-Escalonilla I, Civera C, Galera-Gómez PA. Interactions of 2,2,2-trifluoroethanol with aqueous micelles of Triton X-100. J Colloid Interface Sci. 2009;330(1):163–9.

    Article  Google Scholar 

  6. Cahard D, Bizet V. The influence of fluorine in asymmetric catalysis. Chem Soc Rev. 2014;43(1):135–47.

    Article  CAS  Google Scholar 

  7. Khaledi MG, Jenkins SI, Liang S. Perfluorinated alcohols and acids induce coacervation in aqueous solutions of amphiphiles. Langmuir. 2013;29(8):2458–64.

    Article  CAS  Google Scholar 

  8. Jenkins SI, Collins CM, Khaledi MG. Perfluorinated alcohols induce complex coacervation in mixed surfactants. Langmuir. 2016;32(10):2321–30.

    Article  CAS  Google Scholar 

  9. Chen D, Zhang P, Li Y, Mei Z, Xiao Y. Hexafluoroisopropanol-induced coacervation in aqueous mixed systems of cationic and anionic surfactants for the extraction of sulfonamides in water samples. Anal Bioanal Chem. 2014;406(24):6051–60.

    Article  CAS  Google Scholar 

  10. Ali I, Asim M, Khan TA. Low cost adsorbents for the removal of organic pollutants from wastewater. J Environ Manag. 2012;113:170–83.

    Article  CAS  Google Scholar 

  11. Olson GM, Meyer BM, Portier RJ. Assessment of the toxic potential of polycyclic aromatic hydrocarbons (PAHs) affecting Gulf menhaden (Brevoortia patronus) harvested from waters impacted by the BP Deepwater Horizon Spill. Chemosphere. 2016;145:322–8.

    Article  CAS  Google Scholar 

  12. Kim KH, Jahan SA, Kabir E, Brown RJC. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ Int. 2013;60:71–80.

    Article  CAS  Google Scholar 

  13. Hughe SR, Kay P, Brown LE. Global synthesis and critical evaluation of pharmaceutical data sets collected from river systems. Environ Sci Technol. 2013;47(2):661–77.

    Article  Google Scholar 

  14. Rusu A, Hancu G, Uivarosi V. Fluoroquinolone pollution of food, water and soil, and bacterial resistance. Environ Chem Lett. 2015;13(1):21–36.

    Article  CAS  Google Scholar 

  15. Jiang W, Wang Z, Beier RC, Jiang H, Wu Y, Shen J. Simultaneous determination of 13 fluoroquinolone and 22 sulfonamide residues in milk by a dual-colorimetric enzyme-linked immunosorbent assay. Anal Chem. 2013;85(4):1995–9.

    Article  CAS  Google Scholar 

  16. Vannini C, Domingo G, Marsoni M, Mattia FD, Labra M, Castiglioni S, Bracale M. Effects of a complex mixture of therapeutic drugs on unicellular algae Pseudokirchneriella subcapitata. Aquat Toxicol. 2011;101(2):459–65.

    Article  CAS  Google Scholar 

  17. Yan C, Yang Y, Zhou J, Liu M, Nie M, Shi H, Gu L. Antibiotics in the surface water of the Yangtze Estuary: occurrence, distribution and risk assessment. Environ Pollut. 2013;175:22–9.

    Article  CAS  Google Scholar 

  18. Baquero F, Martínez J, Cantón R. Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol. 2008;19(3):260–5.

    Article  CAS  Google Scholar 

  19. Adegoke O, Forbes PBC. L-cysteine-capped core/shell/shell quantum dot-graphene oxide nanocomposite fluorescence probe for polycyclic aromatic hydrocarbon detection. Talanta. 2016;146:780–8.

    Article  CAS  Google Scholar 

  20. Luaces MD, Urraca JL, Pérez-Conde MC, Alfonso NCM, Valdés-González AC, Gutiérrez AM, Moreno-Bondi MC. Chemiluminescence analysis of enrofloxacin in surface water using the tris(1,10-phenantroline)–ruthenium(II)/peroxydisulphate system and extraction with molecularly imprinted polymers. Microchem J. 2013;110:458–64.

    Article  CAS  Google Scholar 

  21. Lara FJ, García-Campaña AM, Neusüss C, Alés-Barrero F. Determination of sulfonamide residues in water samples by in-line solid-phase extraction-capillary electrophoresis. J Chromatogr A. 2009;1216(15):3372–9.

    Article  CAS  Google Scholar 

  22. Lin C, Huang S. Application of liquid–liquid–liquid microextraction and high-performance liquid-chromatography for the determination of sulfonamides in water. Anal Chim Acta. 2008;612(1):37–43.

    Article  CAS  Google Scholar 

  23. Speltini A, Sturini M, Maraschi F, Consoli L, Zeffiro A, Profumo A. Graphene-derivatized silica as an efficient solid-phase extraction sorbent for pre-concentration of fluoroquinolones from water followed by liquid-chromatography fluorescence detection. J Chromatogr A. 2015;1379:9–15.

    Article  CAS  Google Scholar 

  24. Vergeynst L, Haeck A, Wispelaere PD, Langenhov HV, Demeestere K. Multi-residue analysis of pharmaceuticals in wastewater by liquid chromatography-magnetic sector mass spectrometry: method quality assessment and application in a Belgian case study. Chemosphere. 2015;119:S2–8.

    Article  CAS  Google Scholar 

  25. Lagalante AF, Jacobson RJ, Bruno TJ. UV/Vis spectroscopic evaluation of 4-nitropyridine N-oxide as a solvatochromic indicator for the hydrogen-bond donor ability of solvents. J Org Chem. 1996;61(18):6404–6.

    Article  CAS  Google Scholar 

  26. Zhao G. Physical chemistry of surfactant. The state of the surfactant in aqueous solution. Beijing: Peking University Press; 1984. p. 163–4.

    Google Scholar 

  27. Yan H, Wang H, Qin X, Liu B, Du J. Ultrasound-assisted dispersive liquid-liquid microextraction for determination of fluoroquinolones in pharmaceutical wasterwater. J Pharm Biomed Anal. 2011;54(1):53–7.

    Article  CAS  Google Scholar 

  28. Liang N, Huang P, Hou X, Li Z, Tao L, Zhao L. Solid-phase extraction in combination with dispersive liquid-liquid microextraction and ultra-high performance liquid chromatography-tandem mass spectrometry analysis: the ultra-trace determination of 10 antibiotics in water samples. Anal Bioanal Chem. 2016;408(6):1701–13.

    Article  CAS  Google Scholar 

  29. Aufartová J, Brabcová I, Torres-Padrón ME, Solich P, Sosa-Ferrera Z, Santana-Rodríguez JJ. Determination of fluoroquinolones in fishes using microwave-assisted extraction combined with ultra-high performance liquid chromatography and fluorescence detection. J Food Compos Anal. 2017;56:140–6.

    Article  Google Scholar 

  30. Shi Z, Lee HK. Dispersive liquid-liquid microextraction coupled with dispersive μ-solid-phase extraction for the fast determination of polycyclic aromatic hydrocarbons in environmental water samples. Anal Chem. 2010;82(4):1540–5.

    Article  CAS  Google Scholar 

  31. Khezeli T, Daneshfar A, Sahraei R. Emulsification liquid-liquid microextraction based on deep eutectic solvent: an extraction method for the determination of benzene, toluene, ethylbenzene and seven polycyclic aromatic hydrocarbons from water samples. J Chromatogr A. 2015;1425:25–33.

    Article  CAS  Google Scholar 

  32. Behzadi M, Noroozian E, Mirzaei M. A novel coating based on carbon nanotubes/poly-ortho-phenylenediamine composite for headspace solid-phase microextraction of polycyclic aromatic hydrocarbons. Talanta. 2013;108:66–73.

    Article  CAS  Google Scholar 

  33. Bai L, Mei B, Guo Q, Shi Z, Feng Y. Magnetic solid-phase extraction of hydrophobic analytes in environmental samples by a surface hydrophilic carbon-ferromagmetic nanocomposite. J Chromatogr A. 2010;1217:7331–6.

    Article  CAS  Google Scholar 

  34. Herrera-Herrera AV, Hernández-Borges J, Borges-Miquel TM, Rodríguz-Delgado MÁ. Dispersive liquid–liquid microextraction combined with ultra-high performance liquid chromatography for the simultaneous determination of 25 sulfonamide and quinolone antibiotics in water samples. J Pharm Biomed Anal. 2013;75:130–7.

    Article  CAS  Google Scholar 

  35. Sukchuay T, Kanatharana P, Wannapob R, Thavarungkul P, Bunkoed O. Polypyrrole/silica/magnetic nanoparticles as a sorbent for the extraction of sulfonamides from water samples. J Sep Sci. 2015;38(22):3921–7.

    Article  CAS  Google Scholar 

  36. Zhang W, Duan C, Wang M. Analysis of seven sulphonamides in milk by cloud point extraction and high performance liquid chromatography. Food Chem. 2011;126(2):779–85.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A fluorescent dye called BODIPY was kindly provided by Prof. Xuechuan Hong in Wuhan University School of Pharmaceutical Sciences. We thank the National Natural Science Foundation of China (Grant nos. 81373045 and 81673394), the Provincial Natural Science Foundation of Hubei of China (Grant no. 2015CFA139), and the Innovation Seed Fund of Wuhan University School of Medicine (Grant no. 266078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxiu Xiao.

Ethics declarations

This article does not contain any studies with human or animal subjects.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 318 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Li, Y., Li, C. et al. Hexafluoroisopropanol-mediated cloud point extraction of organic pollutants in water with analysis by high-performance liquid chromatography. Anal Bioanal Chem 409, 4559–4569 (2017). https://doi.org/10.1007/s00216-017-0394-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0394-7

Keywords

Navigation