Skip to main content
Log in

Analysis of the evolution of the detection limits of electrochemical nucleic acid biosensors II

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This critical review of electrochemical biosensors allowing direct detection of nucleic acid targets reports on different transduction pathways and their latest breakthroughs. A classification of the various strategies based on the nature of the electrochemical transduction is established to emphasize the efficiency of each of them. It provides an overall picture of the detection limit of the various approaches developed during the last two decades.

Detection limits evolutions of electrochemical DNA biosensors

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig 12

Similar content being viewed by others

References

  1. Lazerges M, Bedioui F. Analysis of the evolution of the detection limits of electrochemical DNA biosensors. Anal Bioanal Chem. 2013;405:3705–14. doi:10.1007/s00216-012-6672-5.

    Article  CAS  Google Scholar 

  2. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, et al. Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985;230:1350–4.

    Article  CAS  Google Scholar 

  3. Thévenot DR, Tothb K, Durstc RA, Wilson GS. Electrochemical biosensors : recommended definitions and classification. Biosens Bioelectron. 2001;16:121–31. doi:10.1016/S0956-5663(01)00115-4.

    Article  Google Scholar 

  4. Hirayama H, Tamaoka J, Horikoshi K. Improved immobilization of DNA to microwell plates for DNA-DNA hybridization. Nucleic Acids Res. 1996;24:4098–9.

    Article  CAS  Google Scholar 

  5. Li Z, Wang H, Dong S, Wang E. Electrochemical investigation of DNA adsorbed on conducting polymer modified electrode. Anal Sci. 1997;13:305–10. doi:10.2116/analsci.13.Supplement_305.

    Article  CAS  Google Scholar 

  6. Wang J, Cai X, Rivas G, Shiraishi H. Stripping potentiometric transduction of DNA hybridization processes. Anal Chim Acta. 1996;326:141–7. doi:10.1016/0003-2670(96)00042-6.

    Article  CAS  Google Scholar 

  7. Marrazza G, Chianella I, Mascini M. Disposable DNA electrochemical sensor for hybridization detection1. Biosens Bioelectron. 1999;14:43–51. doi:10.1016/S0956-5663(98)00102-X.

    Article  CAS  Google Scholar 

  8. Pang D-W, Abruña HD. Micromethod for the investigation of the interactions between DNA and redox-active molecules. Anal Chem. 1998;70:3162–9. doi:10.1021/ac980211a.

    Article  CAS  Google Scholar 

  9. Lazerges M, Perrot H, Antoine E, Defontaine A, Compere C. Oligonucleotide quartz crystal microbalance sensor for the microalgae Alexandrium minutum (Dinophyceae). Biosens Bioelectron. 2006;21:1355–8. doi:10.1016/j.bios.2005.05.013.

    Article  CAS  Google Scholar 

  10. Védrine C, Lazerges M, Perrot H, Compère C, Dreanno C, Pernelle C. How to control accessibility to biosensor probes? Sens Lett. 2009;7:952–6. doi:10.1166/sl.2009.1179.

    Article  CAS  Google Scholar 

  11. Sharma J, Chhabra R, Andersen CS, Gothelf KV, Yan H, Liu Y. Toward reliable gold nanoparticle patterning on self-assembled DNA nanoscaffold. J Am Chem Soc. 2008;130:7820–1.

    Article  CAS  Google Scholar 

  12. Pividori M, Merkoçi A, Alegret S. Electrochemical genosensor design: immobilisation of oligonucleotides onto transducer surfaces and detection methods. Biosens Bioelectron. 2000;15:291–303. doi:10.1016/S0956-5663(00)00071-3.

    Article  CAS  Google Scholar 

  13. Lazerges M, Perrot H, Rabehagasoa N, Compère C. Thiol- and biotin-labeled probes for oligonucleotide quartz crystal microbalance biosensors of microalga Alexandrium minutum. Biosensors. 2012;2:245–54. doi:10.3390/bios2030245.

    Article  CAS  Google Scholar 

  14. Odenthal KJ, Gooding JJ. An introduction to electrochemical DNAbiosensors. Analyst. 2007;132:603–10. doi:10.1039/B701816A.

    Article  CAS  Google Scholar 

  15. Abbaspour A, Noori A. Electrochemical studies on the oxidation of guanine and adenine at cyclodextrin modified electrodes. Analyst. 2008;133:1664–72. doi:10.1039/B806920D.

    Article  CAS  Google Scholar 

  16. Alipour E, Pournaghi-Azar MH, Parvizi M, Golabi SM, Hejazi MS. Electrochemical detection and discrimination of single copy gene target DNA in non-amplified genomic DNA. Electrochim Acta. 2011;56:1925–31. doi:10.1016/j.electacta.2010.11.092.

    Article  CAS  Google Scholar 

  17. Arora K, Prabhakar N, Chand S, Malhotra BD. Immobilization of single stranded DNA probe onto polypyrrole-polyvinyl sulfonate for application to DNA hybridization biosensor. Sens Actuators B. 2007;126:655–63. doi:10.1016/j.snb.2007.04.029.

    Article  CAS  Google Scholar 

  18. Zhang M, Gan F, Cheng F. Electrochemical behaviors and simultaneous determination of guanine and adenine based on highly ordered Pd-nanowire arrays-modified glassy carbon electrode. Anal Methods. 2015;7:4988–94. doi:10.1039/C5AY00608B.

    Article  CAS  Google Scholar 

  19. Lucarelli F, Marrazza G, Palchetti I, Cesaretti S, Mascini M. Coupling of an indicator-free electrochemical DNA biosensor with polymerase chain reaction for the detection of DNA sequences related to the apolipoprotein E. Anal Chim Acta. 2002;469:93–9. doi:10.1016/S0003-2670(02)00605-0.

    Article  CAS  Google Scholar 

  20. Ariksoysal DO, Karadeniz H, Erdem A, Sengonul A, Sayiner AA, Ozsoz M. Label-free electrochemical hybridization genosensor for the detection of hepatitis B virus genotype on the development of lamivudine resistance. Anal Chem. 2005;77:4908–17. doi:10.1021/ac050022+.

    Article  CAS  Google Scholar 

  21. Erdem A, Papakonstantinou P, Murphy H. Direct DNA hybridization at disposable graphite electrodes modified with carbon nanotubes. Anal Chem. 2006;78:6656–9. doi:10.1021/ac060202z.

    Article  CAS  Google Scholar 

  22. Wang J, Rivas G, Fernandes JR, Lopez Paz JL, Jiang M, Waymire R. Indicator-free electrochemical DNA hybridization biosensor. Anal Chim Acta. 1998;375:197–203. doi:10.1016/S0003-2670(98)00503-0.

    Article  CAS  Google Scholar 

  23. Cai X, Rivas G, Shirashi H, Farias P, Wang J, Tomschik M, et al. Electrochemical analysis of formation of polynucleotide complexes in solution and at electrode surfaces. Anal Chim Acta. 1997;344:65–76. doi:10.1016/S0003-2670(97)00007-X.

    Article  CAS  Google Scholar 

  24. Tajik S, Taher MA, Beitollahi H. Mangiferin DNA biosensor using double-stranded DNA modified pencil graphite electrode based on guanine and adenine signals. J Electroanal Chem. 2014;720–721:134–8. doi:10.1016/j.jelechem.2014.03.039.

    Article  CAS  Google Scholar 

  25. Ozkan D, Erdem A, Kara P, Kerman K, Meric B, Hassmann J, et al. Allele-specific genotype detection of factor V Leiden mutation from polymerase chain reaction amplicons based on label-free electrochemical genosensor. Anal Chem. 2002;74:5931–6. doi:10.1021/ac0257905.

    Article  CAS  Google Scholar 

  26. Hui Y, Ma X, Hou X, Chen F, Yu J. Silver nanoparticles-β-cyclodextrin-graphene nanocomposites based biosensor for guanine and adenine sensing. Ionics (Kiel). 2014;21:1751–9. doi:10.1007/s11581-014-1343-5.

    Article  CAS  Google Scholar 

  27. Tsujiura M, Ichikawa D, Komatsu S, Shiozaki A, Takeshita H, Kosuga T, et al. Circulating microRNAs in plasma of patients with gastric cancers. Br J Cancer. 2010;102:1174–9. doi:10.1038/sj.bjc.6605608.

    Article  CAS  Google Scholar 

  28. Berney H, West J, Haefele E, Alderman J, Lane W, Collins JK. A DNA diagnostic biosensor: development, characterisation and performance. Sens Actuators B. 2000;68:100–8. doi:10.1016/S0925-4005(00)00468-8.

    Article  CAS  Google Scholar 

  29. Guiducci C, Stagni C, Zuccheri G, Bogliolo A, Benini L, Samorì B, et al. DNA detection by integrable electronics. Biosens Bioelectron. 2004;19:781–7. doi:10.1016/S0956-5663(03)00266-5.

    Article  CAS  Google Scholar 

  30. Macanovic A, Marquette C, Polychronakos C, Lawrence MF. Impedance–based detection of DNA sequences using a silicon transducer with PNA as the probe layer. Nucleic Acids Res. 2004;32:e20–0. doi:10.1093/nar/gnh003.

  31. Sakata T, Miyahara Y. Detection of DNA recognition events using multi-well field effect devices. Biosens Bioelectron. 2005;21:827–32. doi:10.1016/j.bios.2005.01.018.

    Article  CAS  Google Scholar 

  32. Zebda A, Stambouli V, Labeau M, Guiducci C, Diard J-P, Le Gorrec B. Metallic oxide CdIn2O4 films for the label free electrochemical detection of DNA hybridization. Biosens Bioelectron. 2006;22:178–84. doi:10.1016/j.bios.2005.12.012.

    Article  CAS  Google Scholar 

  33. Ma K-S, Zhou H, Zoval J, Madou M. DNA hybridization detection by label free versus impedance amplifying label with impedance spectroscopy. Sens Actuators B. 2006;114:58–64. doi:10.1016/j.snb.2005.04.038.

    Article  CAS  Google Scholar 

  34. Barbaro M, Bonfiglio A, Raffo L, Alessandrini A, Facci P, Barák I. Fully electronic DNA hybridization detection by a standard CMOS biochip. Sens Actuators B. 2006;118:41–6. doi:10.1016/j.snb.2006.04.010.

    Article  CAS  Google Scholar 

  35. Lillis B, Manning M, Hurley E, Berney H, Duane R, Mathewson A, et al. Investigation into the effect that probe immobilisation method type has on the analytical signal of an EIS DNA biosensor. Biosens Bioelectron. 2007;22:1289–95. doi:10.1016/j.bios.2006.05.021.

    Article  CAS  Google Scholar 

  36. Davis F, Hughes MA, Cossins AR, Higson SPJ. Single gene differentiation by DNA-modified carbon electrodes using an AC impedimetric approach. Anal Chem. 2007;79:1153–7. doi:10.1021/ac061070c.

    Article  CAS  Google Scholar 

  37. Li A, Yang F, Ma Y, Yang X. Electrochemical impedance detection of DNA hybridization based on dendrimer modified electrode. Biosens Bioelectron. 2007;22:1716–22. doi:10.1016/j.bios.2006.07.033.

    Article  CAS  Google Scholar 

  38. Uno T, Tabata H, Kawai T. Peptide−nucleic acid-modified ion-sensitive field-effect transistor-based biosensor for direct detection of DNA hybridization. Anal Chem. 2007;79:52–9. doi:10.1021/ac060273y.

    Article  CAS  Google Scholar 

  39. Shishkanova TV, Volf R, Krondak M, Král V. Functionalization of PVC membrane with ss oligonucleotides for a potentiometric biosensor. Biosens Bioelectron. 2007;22:2712–7. doi:10.1016/j.bios.2006.11.014.

    Article  CAS  Google Scholar 

  40. Gao Z, Agarwal A, Trigg AD, Singh N, Fang C, Tung C-H, et al. Silicon nanowire arrays for label-free detection of DNA. Anal Chem. 2007;79:3291–7. doi:10.1021/ac061808q.

    Article  CAS  Google Scholar 

  41. Berdat D, Rodríguez ACM, Herrera F, Gijs MAM. Label-free detection of DNA with interdigitated micro-electrodes in a fluidic cell. Lab Chip. 2008;8:302–8. doi:10.1039/B712609C.

    Article  CAS  Google Scholar 

  42. Kuga S, Yang J-H, Takahashi H, Hirama K, Iwasaki T, Kawarada H. Detection of mismatched DNA on partially negatively charged diamond surfaces by optical and potentiometric methods. J Am Chem Soc. 2008;130:13251–63. doi:10.1021/ja710167z.

    Article  CAS  Google Scholar 

  43. Hassen WM, Chaix C, Abdelghani A, Bessueille F, Leonard D, Jaffrezic-Renault N. An impedimetric DNA sensor based on functionalized magnetic nanoparticles for HIV and HBV detection. Sens Actuators B. 2008;134:755–60. doi:10.1016/j.snb.2008.06.020.

    Article  CAS  Google Scholar 

  44. Wang Y, Li C, Li X, Li Y, Kraatz H-B. Unlabeled hairpin-DNA probe for the detection of single-nucleotide mismatches by electrochemical impedance spectroscopy. Anal Chem. 2008;80:2255–60. doi:10.1021/ac7024688.

    Article  CAS  Google Scholar 

  45. Weng J, Zhang J, Li H, Sun L, Lin C, Zhang Q. Label-free DNA sensor by boron-doped diamond electrode using an AC impedimetric approach. Anal Chem. 2008;80:7075–83. doi:10.1021/ac800610z.

    Article  CAS  Google Scholar 

  46. Kafka J, Pänke O, Abendroth B, Lisdat F. A label-free DNA sensor based on impedance spectroscopy. Electrochim Acta. 2008;53:7467–74. doi:10.1016/j.electacta.2008.01.031.

    Article  CAS  Google Scholar 

  47. Tercero N, Wang K, Gong P, Levicky R. Morpholino monolayers: preparation and label-free DNA analysis by surface hybridization. J Am Chem Soc. 2009;131:4953–61. doi:10.1021/ja810051q.

    Article  CAS  Google Scholar 

  48. Zebda A, Labeau M, Diard J-P, Lavalley V, Stambouli V. Electrical resistivity dependence of semi-conductive oxide electrode on the label-free electrochemical detection of DNA. Sens Actuators B. 2010;144:176–82. doi:10.1016/j.snb.2009.10.051.

    Article  CAS  Google Scholar 

  49. Martinovic J, van Wyk J, Mapolie S, Jahed N, Baker P, Iwuoha E. Electrochemical and spectroscopic properties of dendritic cobalto-salicylaldiimine DNA biosensor. Electrochim Acta. 2010;55:4296–302. doi:10.1016/j.electacta.2009.06.065.

    Article  CAS  Google Scholar 

  50. Chen C-P, Ganguly A, Lu C-Y, Chen T-Y, Kuo C-C, Chen R-S, et al. Ultrasensitive in situ label-free DNA detection using a GaN nanowire-based extended-gate field-effect-transistor sensor. Anal Chem. 2011;83:1938–43. doi:10.1021/ac102489y.

    Article  CAS  Google Scholar 

  51. Kwiat M, Elnathan R, Kwak M, de Vries JW, Pevzner A, Engel Y, et al. Non-covalent monolayer-piercing anchoring of lipophilic nucleic acids: preparation, characterization, and sensing applications. J Am Chem Soc. 2012;134:280–92. doi:10.1021/ja206639d.

    Article  CAS  Google Scholar 

  52. Demelas M, Lai S, Casula G, Scavetta E, Barbaro M, Bonfiglio A. An organic, charge-modulated field effect transistor for DNA detection. Sens Actuators B. 2012;171–172:198–203. doi:10.1016/j.snb.2012.03.007.

    Article  CAS  Google Scholar 

  53. Sahoo P, Suresh S, Dhara S, Saini G, Rangarajan S, Tyagi AK. Direct label free ultrasensitive impedimetric DNA biosensor using dendrimer functionalized GaN nanowires. Biosens Bioelectron. 2013;44:164–70. doi:10.1016/j.bios.2013.01.023.

    Article  CAS  Google Scholar 

  54. Lai S, Demelas M, Casula G, Cosseddu P, Barbaro M, Bonfiglio A. Ultralow voltage, OTFT-based sensor for label-free DNA detection. Adv Mater. 2013;25:103–7. doi:10.1002/adma.201202996.

    Article  CAS  Google Scholar 

  55. Nowicka AM, Fau M, Rapecki T, Donten M. Polypyrrole-Au nanoparticles composite as suitable platform for DNA biosensor with electrochemical impedance spectroscopy detection. Electrochim Acta. 2014;140:65–71. doi:10.1016/j.electacta.2014.03.187.

    Article  CAS  Google Scholar 

  56. Zhao L, Cao D, Gao Z, Mi B, Huang W. Label-free DNA sensors based on field-effect transistors with semiconductor of carbon materials. Chin J Chem. 2015;33:828–41. doi:10.1002/cjoc.201500254.

    Article  CAS  Google Scholar 

  57. Xu C, Cai H, He P, Fang Y. Electrochemical detection of sequence-specific DNA using a DNA probe labeled with aminoferrocene and chitosan modified electrode immobilized with ssDNA. Analyst. 2001;126:62–5. doi:10.1039/B005847P.

    Article  CAS  Google Scholar 

  58. Fan C, Plaxco KW, Heeger AJ. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proc Natl Acad Sci U S A. 2003;100:9134–7. doi:10.1073/pnas.1633515100.

    Article  CAS  Google Scholar 

  59. Lubin AA, Lai RY, Baker BR, Heeger AJ, Plaxco KW. Sequence-specific, electronic detection of oligonucleotides in blood, soil, and foodstuffs with the reagentless, reusable E-DNA sensor. Anal Chem. 2006;78:5671–7. doi:10.1021/ac0601819.

    Article  CAS  Google Scholar 

  60. Jenkins DM, Chami B, Kreuzer M, Presting G, Alvarez AM, Liaw BY. Hybridization probe for femtomolar quantification of selected nucleic acid sequences on a disposable electrode. Anal Chem. 2006;78:2314–8. doi:10.1021/ac051619s.

    Article  CAS  Google Scholar 

  61. Lai RY, Seferos DS, Heeger AJ, Bazan GC, Plaxco KW. Comparison of the signaling and stability of electrochemical DNA sensors fabricated from 6- or 11-carbon self-assembled monolayers. Langmuir. 2006;22:10796–800. doi:10.1021/la0611817.

    Article  CAS  Google Scholar 

  62. Jin Y, Yao X, Liu Q, Li J. Hairpin DNA probe based electrochemical biosensor using methylene blue as hybridization indicator. Biosens Bioelectron. 2007;22:1126–30. doi:10.1016/j.bios.2006.04.011.

    Article  CAS  Google Scholar 

  63. Kjällman THM, Peng H, Soeller C, Travas-Sejdic J. Effect of probe density and hybridization temperature on the response of an electrochemical hairpin-DNA sensor. Anal Chem. 2008;80:9460–6. doi:10.1021/ac801567d.

    Article  CAS  Google Scholar 

  64. Kang D, Zuo X, Yang R, Xia F, Plaxco KW, White RJ. Comparing the properties of electrochemical-based dna sensors employing different redox tags. Anal Chem. 2009;81:9109–13. doi:10.1021/ac901811n.

    Article  CAS  Google Scholar 

  65. Zhang D, Peng Y, Qi H, Gao Q, Zhang C. Label-free electrochemical DNA biosensor array for simultaneous detection of the HIV-1 and HIV-2 oligonucleotides incorporating different hairpin-DNA probes and redox indicator. Biosens Bioelectron. 2010;25:1088–94. doi:10.1016/j.bios.2009.09.032.

    Article  CAS  Google Scholar 

  66. Farjami E, Clima L, Gothelf K, Ferapontova EE. “Off−on” electrochemical hairpin-DNA-based genosensor for cancer diagnostics. Anal Chem. 2011;83:1594–602. doi:10.1021/ac1032929.

    Article  CAS  Google Scholar 

  67. Salamifar SE, Lai RY. Fabrication of electrochemical dna sensors on gold-modified recessed platinum nanoelectrodes. Anal Chem. 2014;86:2849–52. doi:10.1021/ac403816h.

    Article  CAS  Google Scholar 

  68. Qian Y, Tang D, Du L, Zhang Y, Zhang L, Gao F. A novel signal-on electrochemical DNA sensor based on target catalyzed hairpin assembly strategy. Biosens Bioelectron. 2015;64:177–81. doi:10.1016/j.bios.2014.09.001.

    Article  CAS  Google Scholar 

  69. Li S, Qiu W, Zhang X, Ni J, Gao F, Wang Q. A high-performance DNA biosensor based on the assembly of gold nanoparticles on the terminal of hairpin-structured probe DNA. Sens Actuators B. 2016;223:861–7. doi:10.1016/j.snb.2015.09.121.

    Article  CAS  Google Scholar 

  70. Millan KM, Mikkelsen SR. Sequence-selective biosensor for DNA based on electroactive hybridization indicators. Anal Chem. 1993;65:2317–23. doi:10.1021/ac00065a025.

    Article  CAS  Google Scholar 

  71. Hashimoto K, Ito K, Ishimori Y. Sequence-specific gene detection with a gold electrode modified with DNA probes and an electrochemically active dye. Anal Chem. 1994;66:3830–3. doi:10.1021/ac00093a045.

    Article  CAS  Google Scholar 

  72. Liu S, Ye J, He P, Fang Y. Voltammetric determination of sequence-specific DNA by electroactive intercalator on graphite electrode. Anal Chim Acta. 1996;335:239–43. doi:10.1016/S0003-2670(96)00331-5.

    Article  CAS  Google Scholar 

  73. Wang J, Palecek E, Nielsen PE, Rivas G, Cai X, Shiraishi H, et al. Peptide nucleic acid probes for sequence-specific DNA biosensors. J Am Chem Soc. 1996;118:7667–70. doi:10.1021/ja9608050.

    Article  CAS  Google Scholar 

  74. Wang J, Cai X, Tian B, Shiraishi H. Microfabricated thick-film electrochemical sensor for nucleic acid determination. Analyst. 1996;121:965–9. doi:10.1039/AN9962100965.

    Article  CAS  Google Scholar 

  75. Wang J, Rivas G, Cai X, Chicharro M, Parrado C, Dontha N, et al. Detection of point mutation in the p53 gene using a peptide nucleic acid biosensor. Anal Chim Acta. 1997;344:111–8. doi:10.1016/S0003-2670(97)00039-1.

    Article  CAS  Google Scholar 

  76. Wang J, Cai X, Rivas G, Shiraishi H, Dontha N. Nucleic-acid immobilization, recognition and detection at chronopotentiometric DNA chips. Biosens Bioelectron. 1997;12:587–99. doi:10.1016/S0956-5663(96)00076-0.

    Article  CAS  Google Scholar 

  77. Sun X, He P, Liu S, Ye J, Fang Y. Immobilization of single-stranded deoxyribonucleic acid on gold electrode with self-assembled aminoethanethiol monolayer for DNA electrochemical sensor applications. Talanta. 1998;47:487–95. doi:10.1016/S0039-9140(98)00108-8.

    Article  CAS  Google Scholar 

  78. Wang J, Fernandes JR, Kubota LT. Polishable and renewable DNA hybridization biosensors. Anal Chem. 1998;70:3699–702. doi:10.1021/ac980092z.

    Article  CAS  Google Scholar 

  79. Maruyama K, Motonaka J, Mishima Y, Matsuzaki Y, Nakabayashi I, Nakabayashi Y. Detection of target DNA by electrochemical method. Sens Actuators B. 2001;76:215–9. doi:10.1016/S0925-4005(01)00645-1.

    Article  CAS  Google Scholar 

  80. Yan F, Erdem A, Meric B, Kerman K, Ozsoz M, Sadik OA. Electrochemical DNA biosensor for the detection of specific gene related to Microcystis species. Electrochem Commun. 2001;3:224–8. doi:10.1016/S1388-2481(01)00149-7.

    Article  CAS  Google Scholar 

  81. Maruyama K, Mishima Y, Minagawa K, Motonaka J. DNA sensor with a dipyridophenazine complex of osmium(II) as an electrochemical probe. Anal Chem. 2002;74:3698–703. doi:10.1021/ac011148j.

    Article  CAS  Google Scholar 

  82. Wong ELS, Gooding JJ. Electronic detection of target nucleic acids by a 2,6-disulfonic acid anthraquinone intercalator. Anal Chem. 2003;75:3845–52. doi:10.1021/ac034129d.

    Article  CAS  Google Scholar 

  83. Cai H, Cao X, Jiang Y, He P, Fang Y. Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection. Anal Bioanal Chem. 2003;375:287–93. doi:10.1007/s00216-002-1652-9.

    Article  CAS  Google Scholar 

  84. Hou P, Ji M, Ge C, Shen J, Li S, He N, et al. Detection of methylation of human p16Ink4a gene 5′-CpG islands by electrochemical method coupled with linker-PCR. Nucleic Acids Res. 2003;31:e92–2. doi:10.1093/nar/gng092.

  85. Wakai J, Takagi A, Nakayama M, Miya T, Miyahara T, Iwanaga T, et al. A novel method of identifying genetic mutations using an electrochemical DNA array. Nucleic Acids Res. 2004;32:e141–1. doi:10.1093/nar/gnh141.

  86. Liu A, Anzai J. Use of polymeric indicator for electrochemical DNA Sensors: poly(4-vinylpyridine) derivative bearing [Os(5,6-dimethyl-1,10-phenanthroline)2Cl]2+. Anal Chem. 2004;76:2975–80. doi:10.1021/ac0303970.

    Article  CAS  Google Scholar 

  87. Kara P, Meric B, Zeytinoglu A, Ozsoz M. Electrochemical DNA biosensor for the detection and discrimination of herpes simplex Type I and Type II viruses from PCR amplified real samples. Anal Chim Acta. 2004;518:69–76. doi:10.1016/j.aca.2004.04.004.

    Article  CAS  Google Scholar 

  88. Zhu N, Chang Z, He P, Fang Y. Electrochemical DNA biosensors based on platinum nanoparticles combined carbon nanotubes. Anal Chim Acta. 2005;545:21–6. doi:10.1016/j.aca.2005.04.015.

    Article  CAS  Google Scholar 

  89. Dharuman V, Grunwald T, Nebling E, Albers J, Blohm L, Hintsche R. Label-free impedance detection of oligonucleotide hybridisation on interdigitated ultramicroelectrodes using electrochemical redox probes. Biosens Bioelectron. 2005;21:645–54. doi:10.1016/j.bios.2004.12.020.

    Article  CAS  Google Scholar 

  90. Tansil NC, Xie H, Xie F, Gao Z. Direct Detection of DNA with an electrocatalytic threading intercalator. Anal Chem. 2005;77:126–34. doi:10.1021/ac0493469.

    Article  CAS  Google Scholar 

  91. Liu S, Li Y, Li J, Jiang L. Enhancement of DNA immobilization and hybridization on gold electrode modified by nanogold aggregates. Biosens Bioelectron. 2005;21:789–95. doi:10.1016/j.bios.2005.02.001.

    Article  CAS  Google Scholar 

  92. Del Pozo MV, Alonso C, Pariente F, Lorenzo E. Electrochemical DNA sensing using osmium complexes as hybridization indicators. Biosens Bioelectron. 2005;20:1549–58. doi:10.1016/j.bios.2004.08.002.

    Article  CAS  Google Scholar 

  93. Wong ELS, Gooding JJ. Electrochemical transduction of DNA hybridization by long-range electron transfer. Aust J Chem. 2005;58:280–7.

    Article  CAS  Google Scholar 

  94. Ge C, Miao W, Ji M, Gu N. Glutaraldehyde-modified electrode for nonlabeling voltammetric detection of p16 INK4A gene. Anal Bioanal Chem. 2005;383:651–9. doi:10.1007/s00216-005-0032-7.

    Article  CAS  Google Scholar 

  95. del Pozo MV, Alonso C, Pariente F, Lorenzo E. DNA biosensor for detection of Helicobacter pylori using phen-dione as the electrochemically active ligand in osmium complexes. Anal Chem. 2005;77:2550–7. doi:10.1021/ac0489263.

    Article  CAS  Google Scholar 

  96. Tansil NC, Xie F, Xie H, Gao Z (2005) An ultrasensitive nucleic acid biosensor based on the catalytic oxidation of guanine by a novel redox threading intercalator. Chem Commun 1064–1066. doi:10.1039/B411803K

  97. Wong ELS, Gooding JJ. Charge transfer through DNA: a selective electrochemical dna biosensor. Anal Chem. 2006;78:2138–44. doi:10.1021/ac0509096.

    Article  CAS  Google Scholar 

  98. Kerman K, Vestergaard M, Nagatani N, Takamura Y, Tamiya E. Electrochemical genosensor based on peptide nucleic acid-mediated PCR and asymmetric pcr techniques: electrostatic interactions with a metal cation. Anal Chem. 2006;78:2182–9. doi:10.1021/ac051526a.

    Article  CAS  Google Scholar 

  99. Dharuman V, Nebling E, Grunwald T, Albers J, Blohm L, Elsholz B, et al. DNA hybridization detection on electrical microarrays using coulostatic pulse technique. Biosens Bioelectron. 2006;22:744–51. doi:10.1016/j.bios.2006.02.014.

    Article  CAS  Google Scholar 

  100. Andreu A, Merkert JW, Lecaros LA, Broglin BL, Brazell JT, El-Kouedi M. Detection of DNA oligonucleotides on nanowire array electrodes using chronocoulometry. Sens Actuators B. 2006;114:1116–20. doi:10.1016/j.snb.2005.07.072.

    Article  CAS  Google Scholar 

  101. Dharuman V, Hahn JH. Effect of short chain alkane diluents on the label free electrochemical DNA hybridization discrimination at the HS-ssDNA/diluent binary mixed monolayer in presence of cationic intercalators. Sens Actuators B. 2007;127:536–44. doi:10.1016/j.snb.2007.05.011.

    Article  CAS  Google Scholar 

  102. Arotiba OA, Ignaszak A, Malgas R, Al-Ahmed A, Baker PGL, Mapolie SF, et al. An electrochemical DNA biosensor developed on novel multinuclear nickel(II) salicylaldimine metallodendrimer platform. Electrochim Acta. 2007;53:1689–96. doi:10.1016/j.electacta.2007.08.016.

    Article  CAS  Google Scholar 

  103. Steichen M, Decrem Y, Godfroid E, Buess-Herman C. Electrochemical DNA hybridization detection using peptide nucleic acids and [Ru(NH3)6]3+ on gold electrodes. Biosens Bioelectron. 2007;22:2237–43. doi:10.1016/j.bios.2006.10.041.

    Article  CAS  Google Scholar 

  104. Qi H, Li X, Chen P, Zhang C. Electrochemical detection of DNA hybridization based on polypyrrole/ss-DNA/multi-wall carbon nanotubes paste electrode. Talanta. 2007;72:1030–5. doi:10.1016/j.talanta.2006.12.032.

    Article  CAS  Google Scholar 

  105. Shiraishi H, Itoh T, Hayashi H, Takagi K, Sakane M, Mori T, et al. Electrochemical detection of E. coli 16S rDNA sequence using air-plasma-activated fullerene-impregnated screen printed electrodes. Bioelectrochemistry. 2007;70:481–7. doi:10.1016/j.bioelechem.2006.07.011.

    Article  CAS  Google Scholar 

  106. Li X-M, Ju H-Q, Ding C-F, Zhang S-S. Nucleic acid biosensor for detection of hepatitis B virus using 2,9-dimethyl-1,10-phenanthroline copper complex as electrochemical indicator. Anal Chim Acta. 2007;582:158–63. doi:10.1016/j.aca.2006.09.004.

    Article  CAS  Google Scholar 

  107. Yang Y, Wang Z, Yang M, Li J, Zheng F, Shen G, et al. Electrical detection of deoxyribonucleic acid hybridization based on carbon-nanotubes/nano zirconium dioxide/chitosan-modified electrodes. Anal Chim Acta. 2007;584:268–74. doi:10.1016/j.aca.2006.11.055.

    Article  CAS  Google Scholar 

  108. Chang H, Yuan Y, Shi N, Guan Y. Electrochemical DNA Biosensor based on conducting polyaniline nanotube array. Anal Chem. 2007;79:5111–5. doi:10.1021/ac070639m.

    Article  CAS  Google Scholar 

  109. March G, Noël V, Piro B, Reisberg S, Pham M-C. Nanometric layers for direct, signal-on, selective, and sensitive electrochemical detection of oligonucleotides hybridization. J Am Chem Soc. 2008;130:15752–3. doi:10.1021/ja8047255.

    Article  CAS  Google Scholar 

  110. Ding C, Zhao F, Zhang M, Zhang S. Hybridization biosensor using 2,9-dimethyl-1,10-phenantroline cobalt as electrochemical indicator for detection of hepatitis B virus DNA. Bioelectrochemistry. 2008;72:28–33. doi:10.1016/j.bioelechem.2007.11.001.

    Article  CAS  Google Scholar 

  111. Ligaj M, Tichoniuk M, Filipiak M. Detection of bar gene encoding phosphinothricin herbicide resistance in plants by electrochemical biosensor. Bioelectrochemistry. 2008;74:32–7. doi:10.1016/j.bioelechem.2008.03.003.

    Article  CAS  Google Scholar 

  112. Chen J, Zhang J, Wang K, Huang L, Lin X, Chen G. Electrochemical biosensor based on hairpin DNA probe using 2-nitroacridone as electrochemical indicator for detection of DNA species related to chronic myelogenous leukemia. Electrochem Commun. 2008;10:1448–51. doi:10.1016/j.elecom.2008.07.035.

    Article  CAS  Google Scholar 

  113. Ma Y, Jiao K, Yang T, Sun D. Sensitive PAT gene sequence detection by nano-SiO2/p-aminothiophenol self-assembled films DNA electrochemical biosensor based on impedance measurement. Sens Actuators B. 2008;131:565–71. doi:10.1016/j.snb.2007.12.046.

    Article  CAS  Google Scholar 

  114. García T, Revenga-Parra M, Abruña HD, Pariente F, Lorenzo E. Single-mismatch position-sensitive detection of DNA based on a bifunctional ruthenium complex. Anal Chem. 2008;80:77–84. doi:10.1021/ac071095r.

    Article  CAS  Google Scholar 

  115. Chen J, Zhang J, Zhuang Q, Chen J, Lin X. Hybridization biosensor using sodium tanshinone IIA sulfonate as electrochemical indicator for detection of short DNA species of chronic myelogenous leukemia. Electrochim Acta. 2008;53:2716–23. doi:10.1016/j.electacta.2007.08.059.

    Article  CAS  Google Scholar 

  116. Niu S, Zhao M, Hu L, Zhang S. Carbon nanotube-enhanced DNA biosensor for DNA hybridization detection using rutin-Mn as electrochemical indicator. Sens Actuators B. 2008;135:200–5. doi:10.1016/j.snb.2008.08.022.

    Article  CAS  Google Scholar 

  117. Du P, Li H, Mei Z, Liu S. Electrochemical DNA biosensor for the detection of DNA hybridization with the amplification of Au nanoparticles and CdS nanoparticles. Bioelectrochemistry. 2009;75:37–43. doi:10.1016/j.bioelechem.2009.01.003.

    Article  CAS  Google Scholar 

  118. Zuo S-H, Zhang L-F, Yuan H-H, Lan M-B, Lawrance GA, Wei G. Electrochemical detection of DNA hybridization by using a zirconia modified renewable carbon paste electrode. Bioelectrochemistry. 2009;74:223–6. doi:10.1016/j.bioelechem.2008.09.004.

    Article  CAS  Google Scholar 

  119. Niu S-Y, Wu M-L, Hu L-Z, Mei Z-H, Liu S-F. Nucleic acid biosensor for DNA hybridization detection using rutin–Cu as an electrochemical indicator. Electrochim Acta. 2009;54:1564–9. doi:10.1016/j.electacta.2008.09.038.

    Article  CAS  Google Scholar 

  120. Roy S, Chen X, Li M-H, Peng Y, Anariba F, Gao Z. Mass-produced nanogap sensor arrays for ultrasensitive detection of DNA. J Am Chem Soc. 2009;131:12211–7. doi:10.1021/ja901704t.

    Article  CAS  Google Scholar 

  121. Gao Z, Ting BP. A DNA biosensor based on a morpholino oligomer coated indium-tin oxide electrode and a cationic redox polymer. Analyst. 2009;134:952–7. doi:10.1039/B816123B.

    Article  CAS  Google Scholar 

  122. Ting BP, Zhang J, Gao Z, Ying JY. A DNA biosensor based on the detection of doxorubicin-conjugated Ag nanoparticle labels using solid-state voltammetry. Biosens Bioelectron. 2009;25:282–7. doi:10.1016/j.bios.2009.07.005.

    Article  CAS  Google Scholar 

  123. Nasef H, Beni V, O’Sullivan CK. Methylene blue as an electrochemical indicator for DF508 cystic fibrosis mutation detection. Anal Bioanal Chem. 2009;396:1423–32. doi:10.1007/s00216-009-3369-5.

    Article  CAS  Google Scholar 

  124. Zhang X, Jiao K, Liu S, Hu Y. Readily reusable electrochemical DNA hybridization biosensor based on the interaction of dna with single-walled carbon nanotubes. Anal Chem. 2009;81:6006–12. doi:10.1021/ac802026j.

    Article  CAS  Google Scholar 

  125. Li F, Chen W, Dong P, Zhang S. A simple strategy of probe DNA immobilization by diazotization-coupling on self-assembled 4-aminothiophenol for DNA electrochemical biosensor. Biosens Bioelectron. 2009;24:2160–4. doi:10.1016/j.bios.2008.11.017.

    Article  CAS  Google Scholar 

  126. Lin L, Lin X, Chen J, Chen W, He M, Chen Y. Electrochemical biosensor for detection of BCR/ABL fusion gene based on hairpin locked nucleic acids probe. Electrochem Commun. 2009;11:1650–3. doi:10.1016/j.elecom.2009.06.015.

    Article  CAS  Google Scholar 

  127. Zhang J, Chen JH, Chen RC, Chen GN, Fu FF. Sequence-specific detection of trace DNA via a junction-probe electrochemical sensor employed template-enhanced hybridization strategy. Biosens Bioelectron. 2009;25:815–9. doi:10.1016/j.bios.2009.08.032.

    Article  CAS  Google Scholar 

  128. Hejazi MS, Pournaghi-Azar MH, Ahour F. Electrochemical detection of short sequences of hepatitis C 3a virus using a peptide nucleic acid-assembled gold electrode. Anal Biochem. 2010;399:118–24. doi:10.1016/j.ab.2009.11.019.

    Article  CAS  Google Scholar 

  129. Liu S, Liu J, Han X, Cui Y, Wang W. Electrochemical DNA biosensor fabrication with hollow gold nanospheres modified electrode and its enhancement in DNA immobilization and hybridization. Biosens Bioelectron. 2010;25:1640–5. doi:10.1016/j.bios.2009.11.026.

    Article  CAS  Google Scholar 

  130. Du M, Yang T, Jiao K. Rapid DNA electrochemical biosensing platform for label-free potentiometric detection of DNA hybridization. Talanta. 2010;81:1022–7. doi:10.1016/j.talanta.2010.01.053.

    Article  CAS  Google Scholar 

  131. Liu S, Liu J, Wang L, Zhao F. Development of electrochemical DNA biosensor based on gold nanoparticle modified electrode by electroless deposition. Bioelectrochemistry. 2010;79:37–42. doi:10.1016/j.bioelechem.2009.10.005.

    Article  CAS  Google Scholar 

  132. Sun W, Qin P, Gao H, Li G, Jiao K. Electrochemical DNA biosensor based on chitosan/nano-V2O5/MWCNTs composite film modified carbon ionic liquid electrode and its application to the LAMP product of Yersinia enterocolitica gene sequence. Biosens Bioelectron. 2010;25:1264–70. doi:10.1016/j.bios.2009.10.011.

    Article  CAS  Google Scholar 

  133. Siddiquee S, Yusof NA, Salleh AB, Tan SG, Bakar FA, Heng LY. DNA hybridization based on Trichoderma harzianum gene probe immobilization on self-assembled monolayers on a modified gold electrode. Sens Actuators B. 2010;147:198–205. doi:10.1016/j.snb.2010.02.014.

    Article  CAS  Google Scholar 

  134. Pournaghi-Azar MH, Ahour F, Hejazi MS. Direct detection and discrimination of double-stranded oligonucleotide corresponding to hepatitis C virus genotype 3a using an electrochemical DNA biosensor based on peptide nucleic acid and double-stranded DNA hybridization. Anal Bioanal Chem. 2010;397:3581–7. doi:10.1007/s00216-010-3875-5.

    Article  CAS  Google Scholar 

  135. Hejazi MS, Raoof J-B, Ojani R, Golabi SM, Asl EH. Brilliant cresyl blue as electroactive indicator in electrochemical DNA oligonucleotide sensors. Bioelectrochemistry. 2010;78:141–6. doi:10.1016/j.bioelechem.2009.09.004.

    Article  CAS  Google Scholar 

  136. Wang J, Li S, Zhang Y. A sensitive DNA biosensor fabricated from gold nanoparticles, carbon nanotubes, and zinc oxide nanowires on a glassy carbon electrode. Electrochim Acta. 2010;55:4436–40. doi:10.1016/j.electacta.2010.02.078.

    Article  CAS  Google Scholar 

  137. Li F, Han X, Liu S. Development of an electrochemical DNA biosensor with a high sensitivity of fM by dendritic gold nanostructure modified electrode. Biosens Bioelectron. 2011;26:2619–25. doi:10.1016/j.bios.2010.11.020.

    Article  CAS  Google Scholar 

  138. Wang L, Chen X, Wang X, Han X, Liu S, Zhao C. Electrochemical synthesis of gold nanostructure modified electrode and its development in electrochemical DNA biosensor. Biosens Bioelectron. 2011;30:151–7. doi:10.1016/j.bios.2011.09.003.

    Article  CAS  Google Scholar 

  139. Wang Q, Zhang B, Lin X, Weng W. Hybridization biosensor based on the covalent immobilization of probe DNA on chitosan–mutiwalled carbon nanotubes nanocomposite by using glutaraldehyde as an arm linker. Sensors Actuators B Chem. 2011;156:599–605. doi:10.1016/j.snb.2011.02.004.

    Article  CAS  Google Scholar 

  140. Bo Y, Yang H, Hu Y, Yao T, Huang S. A novel electrochemical DNA biosensor based on graphene and polyaniline nanowires. Electrochim Acta. 2011;56:2676–81. doi:10.1016/j.electacta.2010.12.034.

    Article  CAS  Google Scholar 

  141. Wu G, Yang N, Zhang T, Wang Z, Lu X, Kang J. Fabrication and application of a new DNA biosensor based on on-substrate PCR and electrochemistry. Sens Actuators B. 2011;160:598–603. doi:10.1016/j.snb.2011.08.034.

    Article  CAS  Google Scholar 

  142. Kannan B, Williams DE, Booth MA, Travas-Sejdic J. High-sensitivity, label-free DNA sensors using electrochemically active conducting polymers. Anal Chem. 2011;83:3415–21. doi:10.1021/ac1033243.

    Article  CAS  Google Scholar 

  143. Raoof JB, Ojani R, Golabi SM, Hamidi-Asl E, Hejazi MS. Preparation of an electrochemical PNA biosensor for detection of target DNA sequence and single nucleotide mutation on p53 tumor suppressor gene corresponding oligonucleotide. Sens Actuators B. 2011;157:195–201. doi:10.1016/j.snb.2011.03.049.

    Article  CAS  Google Scholar 

  144. Li F, Feng Y, Dong P, Yang L, Tang B. Gold nanoparticles modified electrode via simple electrografting of in situ generated mercaptophenyl diazonium cations for development of DNA electrochemical biosensor. Biosens Bioelectron. 2011;26:1947–52. doi:10.1016/j.bios.2010.07.076.

    Article  CAS  Google Scholar 

  145. Zhang Y, Jiang W. Decorating graphene sheets with gold nanoparticles for the detection of sequence-specific DNA. Electrochim Acta. 2012;71:239–45. doi:10.1016/j.electacta.2012.03.136.

    Article  CAS  Google Scholar 

  146. Zhu L, Luo L, Wang Z. DNA electrochemical biosensor based on thionine-graphene nanocomposite. Biosens Bioelectron. 2012;35:507–11. doi:10.1016/j.bios.2012.03.026.

    Article  CAS  Google Scholar 

  147. Pacios M, Yilmaz N, Martín-Fernández I, Villa R, Godignon P, Del Valle M, et al. A simple approach for DNA detection on carbon nanotube microelectrode arrays. Sens Actuators B. 2012;162:120–7. doi:10.1016/j.snb.2011.12.048.

    Article  CAS  Google Scholar 

  148. Du M, Yang T, Li X, Jiao K. Fabrication of DNA/graphene/polyaniline nanocomplex for label-free voltammetric detection of DNA hybridization. Talanta. 2012;88:439–44. doi:10.1016/j.talanta.2011.10.054.

    Article  CAS  Google Scholar 

  149. Wang L, Wang X, Chen X, Liu J, Liu S, Zhao C. Development of an electrochemical DNA biosensor with the DNA immobilization based on in situ generation of dithiocarbamate ligands. Bioelectrochemistry. 2012;88:30–5. doi:10.1016/j.bioelechem.2012.04.003.

    Article  CAS  Google Scholar 

  150. Wang Q, Ding Y, Wang L, Gao C, Gao FF, Gao FF. Highly selective DNA biosensor based on the long-range electron transfer of indigo carmine through DNA duplex. Microchim Acta. 2012;179:273–81. doi:10.1007/s00604-012-0892-4.

    Article  CAS  Google Scholar 

  151. Ahour F, Pournaghi-Azar MH, Hejazi MS. An electrochemical approach for direct detection and discrimination of fully match and single base mismatch double-stranded oligonucleotides corresponding to universal region of hepatitis C virus. Anal Methods. 2012;4:967–72. doi:10.1039/C2AY05795F.

    Article  CAS  Google Scholar 

  152. Zhang X, Gao FF, Cai X, Zheng M, Gao FF, Jiang S, et al. Application of graphene–pyrenebutyric acid nanocomposite as probe oligonucleotide immobilization platform in a DNA biosensor. Mater Sci Eng C. 2013;33:3851–7. doi:10.1016/j.msec.2013.05.022.

    Article  CAS  Google Scholar 

  153. Du D, Guo S, Tang L, Ning Y, Yao Q, Zhang G-J. Graphene-modified electrode for DNA detection via PNA–DNA hybridization. Sens Actuators B. 2013;186:563–70. doi:10.1016/j.snb.2013.06.045.

    Article  CAS  Google Scholar 

  154. Shi L, Chu Z, Dong X, Jin W, Dempsey E. A highly oriented hybrid microarray modified electrode fabricated by a template-free method for ultrasensitive electrochemical DNA recognition. Nanoscale. 2013;5:10219. doi:10.1039/c3nr03097k.

    Article  CAS  Google Scholar 

  155. Ahour F, Pournaghi-Azar MH, Alipour E, Hejazi MS. Detection and discrimination of recombinant plasmid encoding hepatitis C virus core/E1 gene based on PNA and double-stranded DNA hybridization. Biosens Bioelectron. 2013;45:287–91. doi:10.1016/j.bios.2013.01.063.

    Article  CAS  Google Scholar 

  156. Yang Y, Li C, Yin L, Liu M, Wang Z, Shu Y, et al. Enhanced charge transfer by gold nanoparticle at DNA modified electrode and its application to label-free DNA detection. ACS Appl Mater Interfaces. 2014;6:7579–84. doi:10.1021/am500912m.

    Article  CAS  Google Scholar 

  157. Yola ML, Eren T, Atar N. A novel and sensitive electrochemical DNA biosensor based on Fe@Au nanoparticles decorated graphene oxide. Electrochim Acta. 2014;125:38–47. doi:10.1016/j.electacta.2014.01.074.

    Article  CAS  Google Scholar 

  158. Huang K-J, Liu Y-J, Wang H-B, Wang Y-Y. A sensitive electrochemical DNA biosensor based on silver nanoparticles-polydopamine@graphene composite. Electrochim Acta. 2014;118:130–7. doi:10.1016/j.electacta.2013.12.019.

    Article  CAS  Google Scholar 

  159. Yang T, Meng L, Zhao J, Wang X, Jiao K. Graphene-based polyaniline arrays for deoxyribonucleic acid electrochemical sensor: effect of nanostructure on sensitivity. ACS Appl Mater Interfaces. 2014;6:19050–6. doi:10.1021/am504998e.

    Article  CAS  Google Scholar 

  160. Tian T, Li Z, Lee E-C. Sequence-specific detection of DNA using functionalized graphene as an additive. Biosens Bioelectron. 2014;53:336–9. doi:10.1016/j.bios.2013.09.076.

    Article  CAS  Google Scholar 

  161. Li F, Peng J, Zheng Q, Guo X, Tang H, Yao S. carbon nanotube-polyamidoamine dendrimer hybrid-modified electrodes for highly sensitive electrochemical detection of microRNA24. Anal Chem. 2015;87:4806–13. doi:10.1021/acs.analchem.5b00093.

    Article  CAS  Google Scholar 

  162. Sun Y, He X, Ji J, Jia M, Wang Z, Sun X. A highly selective and sensitive electrochemical CS–MWCNTs/Au-NPs composite DNA biosensor for Staphylococcus aureus gene sequence detection. Talanta. 2015;141:300–6. doi:10.1016/j.talanta.2015.03.052.

    Article  CAS  Google Scholar 

  163. Azimzadeh M, Rahaie M, Nasirizadeh N, Ashtari K, Naderi-Manesh H. An electrochemical nanobiosensor for plasma miRNA-155, based on graphene oxide and gold nanorod, for early detection of breast cancer. Biosens Bioelectron. 2016;77:99–106. doi:10.1016/j.bios.2015.09.020.

    Article  CAS  Google Scholar 

  164. Izadi Z, Sheikh-Zeinoddin M, Ensafi AA, Soleimanian-Zad S. Fabrication of an electrochemical DNA-based biosensor for Bacillus cereus detection in milk and infant formula. Biosens Bioelectron. 2016;80:582–9. doi:10.1016/j.bios.2016.02.032.

    Article  CAS  Google Scholar 

  165. Hajihosseini S, Nasirizadeh N, Hejazi MS, Yaghmaei P. A sensitive DNA biosensor fabricated from gold nanoparticles and graphene oxide on a glassy carbon electrode. Mater Sci Eng C. 2016;61:506–15. doi:10.1016/j.msec.2015.12.091.

    Article  CAS  Google Scholar 

  166. Su S, Wu Y, Zhu D, Chao J, Liu X, Wan Y, et al. On-electrode synthesis of shape-controlled hierarchical flower-like gold nanostructures for efficient interfacial DNA assembly and sensitive electrochemical sensing of microRNA. Small. 2016;12:3794–801. doi:10.1002/smll.201601066.

    Article  CAS  Google Scholar 

  167. Hajihosseini S, Nasirizadeh N, Hejazi MS, Yaghmaei P. An electrochemical DNA biosensor based on Oracet Blue as a label for detection of Helicobacter pylori. Int J Biol Macromol. 2016;91:911–7. doi:10.1016/j.ijbiomac.2016.04.009.

    Article  CAS  Google Scholar 

  168. Dharuman V, Hahn JH. Label free electrochemical DNA hybridization discrimination effects at the binary and ternary mixed monolayers of single stranded DNA/diluent/s in presence of cationic intercalators. Biosens Bioelectron. 2008;23:1250–8. doi:10.1016/j.bios.2007.11.015.

    Article  CAS  Google Scholar 

  169. Fang Z, Kelley SO. Direct electrocatalytic mRNA detection using PNA-nanowire sensors. Anal Chem. 2009;81:612–7. doi:10.1021/ac801890f.

    Article  CAS  Google Scholar 

  170. Wipawakarn P, Ju H, Wong DKY. A label-free electrochemical DNA biosensor based on a Zr(IV)-coordinated DNA duplex immobilised on a carbon nanofibre|chitosan layer. Anal Bioanal Chem. 2012;402:2817–26. doi:10.1007/s00216-012-5733-0.

    Article  CAS  Google Scholar 

  171. Lazerges M, Tal VT, Bigey P, Scherman D, Bedioui F. Electrochemical DNA-biosensors: Two-electrode setup well adapted for miniaturized devices. Sens Actuators B. 2013;182:510–3. doi:10.1016/j.snb.2013.02.098.

    Article  CAS  Google Scholar 

  172. Nassi A, Guillon F-X, Amar A, Hainque B, Amriche S, Maugé D, et al. Electrochemical DNA-biosensors based on long-range electron transfer: optimization of the amperometric detection in the femtomolar range using two-electrode setup and ultramicroelectrode. Electrochim Acta. 2016;209:269–77. doi:10.1016/j.electacta.2016.04.144.

    Article  CAS  Google Scholar 

  173. Kelley SO, Barton JK, Jackson NM, Hill MG. Electrochemistry of methylene blue bound to a DNA-modified electrode. Bioconjug Chem. 1997;8:31–7. doi:10.1021/bc960070o.

    Article  CAS  Google Scholar 

  174. Kelley SO, Boon EM, Barton JK, Jackson NM, Hill MG. Single-base mismatch detection based on charge transduction through DNA. Nucleic Acids Res. 1999;27:4830–7.

    Article  CAS  Google Scholar 

  175. Korri-Youssoufi H, Garnier F, Srivastava P, Godillot P, Yassar A. Toward bioelectronics: specific DNA recognition based on an oligonucleotide-functionalized polypyrrole. J Am Chem Soc. 1997;119:7388–9. doi:10.1021/ja964261d.

    Article  CAS  Google Scholar 

  176. Garnier F, Korri-Youssoufi H, Srivastava P, Mandrand B, Delair T. Toward intelligent polymers: DNA sensors based on oligonucleotide-functionalized polypyrroles. Synth Met. 1999;100:89–94. doi:10.1016/S0379-6779(98)00169-6.

    Article  CAS  Google Scholar 

  177. Wang J, Jiang M, Fortes A, Mukherjee B. New label-free DNA recognition based on doping nucleic-acid probes within conducting polymer films. Anal Chim Acta. 1999;402:7–12. doi:10.1016/S0003-2670(99)00531-0.

    Article  CAS  Google Scholar 

  178. Korri-Youssoufi H, Yassar A. Electrochemical probing of DNA based on oligonucleotide-functionalized polypyrrole. Biomacromolecules. 2001;2:58–64. doi:10.1021/bm0000440.

    Article  CAS  Google Scholar 

  179. Lee T-Y, Shim Y-B. Direct DNA hybridization detection based on the oligonucleotide-functionalized conductive polymer. Anal Chem. 2001;73:5629–32. doi:10.1021/ac015572w.

    Article  CAS  Google Scholar 

  180. Korri-Youssoufi H, Makrouf B. Electrochemical biosensing of DNA hybridization by ferrocenyl groups functionalized polypyrrole. Anal Chim Acta. 2002;469:85–92. doi:10.1016/S0003-2670(02)00539-1.

    Article  CAS  Google Scholar 

  181. Tran LD, Piro B, Pham MC, Ledoan T, Angiari C, Dao LH, et al. A polytyramine film for covalent immobilization of oligonucleotides and hybridization. Synth Met. 2003;139:251–62. doi:10.1016/S0379-6779(03)00131-0.

    Article  CAS  Google Scholar 

  182. Cha J, Han JI, Choi Y, Yoon DS, Oh KW, Lim G. DNA hybridization electrochemical sensor using conducting polymer. Biosens Bioelectron. 2003;18:1241–7. doi:10.1016/S0956-5663(03)00088-5.

    Article  CAS  Google Scholar 

  183. Xu Y, Jiang Y, Cai H, He P-G, Fang Y-Z. Electrochemical impedance detection of DNA hybridization based on the formation of M-DNA on polypyrrole/carbon nanotube modified electrode. Anal Chim Acta. 2004;516:19–27. doi:10.1016/j.aca.2004.04.013.

    Article  CAS  Google Scholar 

  184. Ramanaviciene A, Ramanavicius A. Pulsed amperometric detection of DNA with an ssDNA/polypyrrole-modified electrode. Anal Bioanal Chem. 2004;379:287–93. doi:10.1007/s00216-004-2573-6.

    Article  CAS  Google Scholar 

  185. Peng H, Soeller C, Vigar N, Kilmartin PA, Cannell MB, Bowmaker GA, et al. Label-free electrochemical DNA sensor based on functionalised conducting copolymer. Biosens Bioelectron. 2005;20:1821–8. doi:10.1016/j.bios.2004.07.013.

    Article  CAS  Google Scholar 

  186. Tlili C, Korri-Youssoufi H, Ponsonnet L, Martelet C, Jaffrezic-Renault NJ. Electrochemical impedance probing of DNA hybridisation on oligonucleotide-functionalised polypyrrole. Talanta. 2005;68:131–7. doi:10.1016/j.talanta.2005.04.069.

    Article  CAS  Google Scholar 

  187. Komarova E, Aldissi M, Bogomolova A. Direct electrochemical sensor for fast reagent-free DNA detection. Biosens Bioelectron. 2005;21:182–9. doi:10.1016/j.bios.2004.07.025.

    Article  CAS  Google Scholar 

  188. dos Santos RC, Yamanaka H, Josowicz M, Kowalik J, Mizaikoff B, Kranz C. Label-free DNA detection based on modified conducting polypyrrole films at microelectrodes. Anal Chem. 2006;78:1139–45. doi:10.1021/ac051478u.

    Article  CAS  Google Scholar 

  189. Chen Y, Elling LY, Chong S. A fast, sensitive and label free electrochemical DNA sensor. J Phys Conf Ser. 2006;34:204. doi:10.1088/1742-6596/34/1/034.

    Article  CAS  Google Scholar 

  190. Reisberg S, Piro B, Noel V, Pham MC. Selectivity and sensitivity of a reagentless electrochemical DNA sensor studied by square wave voltammetry and fluorescence. Bioelectrochemistry. 2006;69:172–9. doi:10.1016/j.bioelechem.2005.12.007.

    Article  CAS  Google Scholar 

  191. Mouffouk F, Higgins SJ. Oligonucleotide–functionalised poly(3,4-ethylenedioxythiophene)-coated microelectrodes which show selective electrochemical response to hybridisation. Electrochem Commun. 2006;8:317–22. doi:10.1016/j.elecom.2005.11.027.

    Article  CAS  Google Scholar 

  192. Garnier F, Bouabdallaoui B, Srivastava P, Mandrand B, Chaix C. Conjugated polymer-based DNA chip with real time access and femtomol detection threshold. Sens Actuators B. 2007;123:13–20. doi:10.1016/j.snb.2006.07.015.

    Article  CAS  Google Scholar 

  193. Bouchet A, Chaix C, Marquette CA, Blum LJ, Mandrand B. Cylinder-shaped conducting polypyrrole for labelless electrochemical multidetection of DNA. Biosens Bioelectron. 2007;23:735–40. doi:10.1016/j.bios.2007.06.018.

    Article  CAS  Google Scholar 

  194. Piro B, Reisberg S, Noel V, Pham MC. Investigations of the steric effect on electrochemical transduction in a quinone-based DNA sensor. Biosens Bioelectron. 2007;22:3126–31. doi:10.1016/j.bios.2007.02.007.

    Article  CAS  Google Scholar 

  195. Peng H, Soeller C, Vigar NA, Caprio V, Travas-Sejdic J. Label-free detection of DNA hybridization based on a novel functionalized conducting polymer. Biosens Bioelectron. 2007;22:1868–73. doi:10.1016/j.bios.2006.07.010.

    Article  CAS  Google Scholar 

  196. Tlili C, Jaffrezic-Renault NJ, Martelet C, Korri-Youssoufi H. Direct electrochemical probing of DNA hybridization on oligonucleotide-functionalized polypyrrole. Mater Sci Eng C. 2008;28:848–54. doi:10.1016/j.msec.2007.10.061.

    Article  CAS  Google Scholar 

  197. Jiang C, Yang T, Jiao K, Gao H. A DNA electrochemical sensor with poly-l-lysine/single-walled carbon nanotubes films and its application for the highly sensitive EIS detection of PAT gene fragment and PCR amplification of NOS gene. Electrochim Acta. 2008;53:2917–24. doi:10.1016/j.electacta.2007.11.015.

    Article  CAS  Google Scholar 

  198. dos Santos Riccardi C, Kranz C, Kowalik J, Yamanaka H, Mizaikoff B, Josowicz M. Label-free DNA detection of hepatitis C virus based on modified conducting polypyrrole films at microelectrodes and atomic force microscopy tip-integrated electrodes. Anal Chem. 2008;80:237–45. doi:10.1021/ac701613t.

    Article  CAS  Google Scholar 

  199. Reisberg S, Piro B, Noel V, Nguyen TD, Nielsen PE, Pham MC. Investigation of the charge effect on the electrochemical transduction in a quinone-based DNA sensor. Electrochim Acta. 2008;54:346–51. doi:10.1016/j.electacta.2008.07.087.

    Article  CAS  Google Scholar 

  200. Feng Y, Yang T, Zhang W, Jiang C, Jiao K. Enhanced sensitivity for deoxyribonucleic acid electrochemical impedance sensor: gold nanoparticle/polyaniline nanotube membranes. Anal Chim Acta. 2008;616:144–51. doi:10.1016/j.aca.2008.04.022.

    Article  CAS  Google Scholar 

  201. Uygun A. DNA hybridization electrochemical biosensor using a functionalized polythiophene. Talanta. 2009;79:194–8. doi:10.1016/j.talanta.2009.03.049.

    Article  CAS  Google Scholar 

  202. Tiwari A, Gong S. Electrochemical detection of a breast cancer susceptible gene using cDNA immobilized chitosan-co-polyaniline electrode. Talanta. 2009;77:1217–22. doi:10.1016/j.talanta.2008.08.029.

    Article  CAS  Google Scholar 

  203. Kuralay F, Erdem A, Abacı S, Özyörük H, Yıldız A. Characterization of redox polymer based electrode and electrochemical behavior for DNA detection. Anal Chim Acta. 2009;643:83–9. doi:10.1016/j.aca.2009.03.051.

    Article  CAS  Google Scholar 

  204. Kuralay F, Erdem A, Abacı S, Özyörük H, Yıldız A. Poly(vinylferrocenium) coated disposable pencil graphite electrode for DNA hybridization. Electrochem Commun. 2009;11:1242–6. doi:10.1016/j.elecom.2009.04.010.

    Article  CAS  Google Scholar 

  205. Nie G, Zhang Y, Guo Q, Zhang S. Label-free DNA detection based on a novel nanostructured conducting poly(indole-6-carboxylic acid) films. Sens Actuators B. 2009;139:592–7. doi:10.1016/j.snb.2009.03.009.

    Article  CAS  Google Scholar 

  206. Yang T, Zhou N, Zhang Y, Zhang W, Jiao K, Li G. Synergistically improved sensitivity for the detection of specific DNA sequences using polyaniline nanofibers and multi-walled carbon nanotubes composites. Biosens Bioelectron. 2009;24:2165–70. doi:10.1016/j.bios.2008.11.011.

    Article  CAS  Google Scholar 

  207. Lien TTN, Lam TD, An VTH, Hoang TV, Quang DT, Khieu DQ, et al. Multi-wall carbon nanotubes (MWCNTs)-doped polypyrrole DNA biosensor for label-free detection of genetically modified organisms by QCM and EIS. Talanta. 2010;80:1164–9. doi:10.1016/j.talanta.2009.09.002.

    Article  CAS  Google Scholar 

  208. Liu X, Qu X, Fan H, Ai S, Han R. Electrochemical detection of DNA hybridization using a water-soluble branched polyethyleneimine–cobalt(III)–phenanthroline indicator and PNA probe on Au electrodes. Electrochim Acta. 2010;55:6491–5. doi:10.1016/j.electacta.2010.06.034.

    Article  CAS  Google Scholar 

  209. Kalantari R, Cantor R, Chen H, Yu G, Janata J, Josowicz M. Label-free voltammetric detection using individually addressable oligonucleotide microelectrode arrays. Anal Chem. 2010;82:9028–33. doi:10.1021/ac102002k.

    Article  CAS  Google Scholar 

  210. Lê HQA, Chebil S, Makrouf B, Sauriat-Dorizon H, Mandrand B, Korri-Youssoufi H. Effect of the size of electrode on electrochemical properties of ferrocene-functionalized polypyrrole towards DNA sensing. Talanta. 2010;81:1250–7. doi:10.1016/j.talanta.2010.02.017.

    Article  CAS  Google Scholar 

  211. Kuralay F, Erdem A, Abacı S, Özyörük H, Yıldız A. Characterization of poly(vinylferrocenium) coated surfaces and their applications in DNA sensor technology. J Appl Electrochem. 2010;40:2039–50. doi:10.1007/s10800-010-0185-8.

    Article  CAS  Google Scholar 

  212. Bangar MA, Shirale DJ, Purohit HJ, Chen W, Myung NV, Mulchandani A. Single conducting polymer nanowire based sequence-specific, base-pair-length dependant label-free DNA sensor. Electroanalysis. 2011;23:371–9. doi:10.1002/elan.201000388.

    Article  CAS  Google Scholar 

  213. Booth MA, Harbison S, Travas-Sejdic J. Development of an electrochemical polypyrrole-based DNA sensor and subsequent studies on the effects of probe and target length on performance. Biosens Bioelectron. 2011;28:362–7. doi:10.1016/j.bios.2011.07.051.

    Article  CAS  Google Scholar 

  214. Budnikov HC, Evtugyn GA, Porfireva AV. Electrochemical DNA sensors based on electropolymerized materials. Talanta. 2012;102:137–55. doi:10.1016/j.talanta.2012.07.027.

    Article  CAS  Google Scholar 

  215. Yang J, Wang X, Shi H. An electrochemical DNA biosensor for highly sensitive detection of phosphinothricin acetyltransferase gene sequence based on polyaniline-(mesoporous nanozirconia)/poly-tyrosine film. Sens Actuators B. 2012;162:178–83. doi:10.1016/j.snb.2011.12.064.

    Article  CAS  Google Scholar 

  216. Wilson J, Radhakrishnan S, Sumathi C, Dharuman V. Polypyrrole–polyaniline–Au (PPy–PANi–Au) nano composite films for label-free electrochemical DNA sensing. Sens Actuators B. 2012;171–172:216–22. doi:10.1016/j.snb.2012.03.019.

    Article  CAS  Google Scholar 

  217. Radhakrishnan S, Sumathi C, Dharuman V, Wilson J. Polypyrrole nanotubes–polyaniline composite for DNA detection using methylene blue as intercalator. Anal Methods. 2013;5:1010–5. doi:10.1039/C2AY26127H.

    Article  CAS  Google Scholar 

  218. Bouffier L, Wang BS, Roget A, Livache T, Demeunynck M, Mailley P. Electrochemical transduction of DNA hybridization at modified electrodes by using an electroactive pyridoacridone intercalator. Anal Bioanal Chem. 2013;406:1163–72. doi:10.1007/s00216-013-7314-2.

    Article  CAS  Google Scholar 

  219. Radhakrishnan S, Sumathi C, Umar A, Jae Kim S, Wilson J, Dharuman V. Polypyrrole–poly(3,4-ethylenedioxythiophene)–Ag (PPy–PEDOT–Ag) nanocomposite films for label-free electrochemical DNA sensing. Biosens Bioelectron. 2013;47:133–40. doi:10.1016/j.bios.2013.02.049.

    Article  CAS  Google Scholar 

  220. Sosnowska M, Pieta P, Sharma PS, Chitta R, Kc CB, Bandi V, et al. Piezomicrogravimetric and impedimetric oligonucleotide biosensors using conducting polymers of biotinylated bis(2,2′-bithien-5-yl)methane as recognition units. Anal Chem. 2013;85:7454–61. doi:10.1021/ac401404d.

    Article  CAS  Google Scholar 

  221. Tran TL, Chu TX, Huynh DC, Pham DT, Luu THT, Mai AT. Effective immobilization of DNA for development of polypyrrole nanowires based biosensor. Appl Surf Sci. 2014;314:260–5. doi:10.1016/j.apsusc.2014.06.068.

    Article  CAS  Google Scholar 

  222. Miodek A, Mejri N, Gomgnimbou M, Sola C, Korri-Youssoufi H. E-DNA sensor of Mycobacterium tuberculosis based on electrochemical assembly of nanomaterials (MWCNTs/PPy/PAMAM). Anal Chem. 2015;87:9257–64. doi:10.1021/acs.analchem.5b01761.

    Article  CAS  Google Scholar 

  223. Galán T, Prieto-Simón B, Alvira M, Eritja R, Götz G, Bäuerle P, et al. Label-free electrochemical DNA sensor using “click”-functionalized PEDOT electrodes. Biosens Bioelectron. 2015;74:751–6. doi:10.1016/j.bios.2015.07.037.

    Article  CAS  Google Scholar 

  224. Sun W, Qi X, Chen Y, Liu S, Gao H. Application of chitosan/Fe3O4 microsphere–graphene composite modified carbon ionic liquid electrode for the electrochemical detection of the PCR product of soybean Lectin gene sequence. Talanta. 2011;87:106–12. doi:10.1016/j.talanta.2011.09.047.

    Article  CAS  Google Scholar 

  225. Erdem A, Kerman K, Meric B, Akarca US, Ozsoz M. Novel hybridization indicator methylene blue for the electrochemical detection of short DNA sequences related to the hepatitis B virus. Anal Chim Acta. 2000;422:139–49. doi:10.1016/S0003-2670(00)01058-8.

    Article  CAS  Google Scholar 

  226. Ozkan D, Kara P, Kerman K, Meric B, Erdem A, Jelen F, et al. DNA and PNA sensing on mercury and carbon electrodes by using methylene blue as an electrochemical label. Bioelectrochemistry. 2002;58:119–26. doi:10.1016/S1567-5394(02)00131-7.

    Article  CAS  Google Scholar 

  227. Meric B, Kerman K, Ozkan D, Kara P, Erensoy S, Akarca US, et al. Electrochemical DNA biosensor for the detection of TT and Hepatitis B virus from PCR amplified real samples by using methylene blue. Talanta. 2002;56:837–46. doi:10.1016/S0039-9140(01)00650-6.

    Article  CAS  Google Scholar 

  228. Zhu N, Zhang A, Wang Q, He P, Fang Y. Electrochemical detection of DNA hybridization using methylene blue and electro-deposited zirconia thin films on gold electrodes. Anal Chim Acta. 2004;510:163–8. doi:10.1016/j.aca.2004.01.017.

    Article  CAS  Google Scholar 

  229. Kerman K, Morita Y, Takamura Y, Ozsoz M, Tamiya E. DNA-directed attachment of carbon nanotubes for enhanced label-free electrochemical detection of DNA hybridization. Electroanalysis. 2004;16:1667–72. doi:10.1002/elan.200303025.

    Article  CAS  Google Scholar 

  230. Turcu F, Schulte A, Hartwich G, Schuhmann W. Imaging immobilised ssDNA and detecting DNA hybridisation by means of the repelling mode of scanning electrochemical microscopy (SECM). Biosens Bioelectron. 2004;20:925–32. doi:10.1016/j.bios.2004.06.011.

    Article  CAS  Google Scholar 

  231. Teh HF, Gong H, Dong X-D, Zeng X, Lai Kuan Tan A, Yang X, et al. Electrochemical biosensing of DNA with capture probe covalently immobilized onto glassy carbon surface. Anal Chim Acta. 2005;551:23–9. doi:10.1016/j.aca.2005.07.008.

    Article  CAS  Google Scholar 

  232. Pournaghi-Azar MH, Hejazi MS, Alipour E. Developing an electrochemical deoxyribonucleic acid (DNA) biosensor on the basis of human interleukine-2 gene using an electroactive label. Anal Chim Acta. 2006;570:144–50. doi:10.1016/j.aca.2006.04.067.

    Article  CAS  Google Scholar 

  233. Feng K-J, Yang Y-H, Wang Z-J, Jiang J-H, Shen G-L, Yu R-Q. A nano-porous CeO2/chitosan composite film as the immobilization matrix for colorectal cancer DNA sequence-selective electrochemical biosensor. Talanta. 2006;70:561–5. doi:10.1016/j.talanta.2006.01.009.

    Article  CAS  Google Scholar 

  234. Zhu N, Chang Z, He P, Fang Y. Electrochemically fabricated polyaniline nanowire-modified electrode for voltammetric detection of DNA hybridization. Electrochim Acta. 2006;51:3758–62. doi:10.1016/j.electacta.2005.10.038.

    Article  CAS  Google Scholar 

  235. Yang J, Jiao K, Yang T. A DNA electrochemical sensor prepared by electrodepositing zirconia on composite films of single-walled carbon nanotubes and poly(2,6-pyridinedicarboxylic acid), and its application to detection of the PAT gene fragment. Anal Bioanal Chem. 2007;389:913–21. doi:10.1007/s00216-007-1450-5.

    Article  CAS  Google Scholar 

  236. Mandong G, Yanqing L, Hongxia G, Xiaoqin W, Lifang F. Electrochemical detection of short sequences related to the hepatitis B virus using MB on chitosan-modified CPE. Bioelectrochemistry. 2007;70:245–9. doi:10.1016/j.bioelechem.2006.09.002.

    Article  CAS  Google Scholar 

  237. Lin X-H, Wu P, Chen W, Zhang Y-F, Xia X-H. Electrochemical DNA biosensor for the detection of short DNA species of chronic myelogenous leukemia by using methylene blue. Talanta. 2007;72:468–71. doi:10.1016/j.talanta.2006.11.015.

    Article  CAS  Google Scholar 

  238. Yang T, Zhang W, Du M, Jiao K. A PDDA/poly(2,6-pyridinedicarboxylic acid)-CNTs composite film DNA electrochemical sensor and its application for the detection of specific sequences related to PAT gene and NOS gene. Talanta. 2008;75:987–94. doi:10.1016/j.talanta.2007.12.049.

    Article  CAS  Google Scholar 

  239. Li X, Xia J, Zhang S. Label-free detection of DNA hybridization based on poly(indole-5-carboxylic acid) conducting polymer. Anal Chim Acta. 2008;622:104–10. doi:10.1016/j.aca.2008.05.044.

    Article  CAS  Google Scholar 

  240. Reisberg S, Dang LA, Nguyen QA, Piro B, Noel V, Nielsen PE, et al. Label-free DNA electrochemical sensor based on a PNA-functionalized conductive polymer. Talanta. 2008;76:206–10. doi:10.1016/j.talanta.2008.02.044.

    Article  CAS  Google Scholar 

  241. Zhang W, Yang T, Huang DM, Jiao K. Electrochemical sensing of DNA immobilization and hybridization based on carbon nanotubes/nano zinc oxide/chitosan composite film. Chin Chem Lett. 2008;19:589–91. doi:10.1016/j.cclet.2008.03.012.

    Article  CAS  Google Scholar 

  242. Wei N, Chen J, Zhang J, Wang K, Xu X, Lin J, et al. An electrochemical biosensor for detection of PML/RARA fusion gene using capture probe covalently immobilized onto poly-calcon carboxylic acid modified glassy carbon electrode. Talanta. 2009;78:1227–34. doi:10.1016/j.talanta.2008.12.053.

    Article  CAS  Google Scholar 

  243. Zhou N, Yang T, Jiang C, Du M, Jiao K. Highly sensitive electrochemical impedance spectroscopic detection of DNA hybridization based on Aunano–CNT/PANnano films. Talanta. 2009;77:1021–6. doi:10.1016/j.talanta.2008.07.058.

    Article  CAS  Google Scholar 

  244. Lin L, Chen J, Lin Q, Chen W, Chen J, Yao H, et al. Electrochemical biosensor based on nanogold-modified poly-eriochrome black T film for BCR/ABL fusion gene assay by using hairpin LNA probe. Talanta. 2010;80:2113–9. doi:10.1016/j.talanta.2009.11.017.

    Article  CAS  Google Scholar 

  245. Liu A, Chen X, Wang K, Wei N, Sun Z, Lin X, et al. Electrochemical DNA biosensor based on aldehyde-agarose hydrogel modified glassy carbon electrode for detection of PML/RARa fusion gene. Sens Actuators B. 2011;160:1458–63. doi:10.1016/j.snb.2011.10.013.

    Article  CAS  Google Scholar 

  246. Wang Q, Shi J, Ni J, Gao FF, Gao FF, Weng W, et al. DNA hybridization biosensor using chitosan–carbon nanotubes composite film as an immobilization platform and [Cu(bpy)(MBZ)2(H2O)] (bpy = 2,2′-bipyridine, MBZ = p-methylbenzoate) as a novel redox indicator. Electrochim Acta. 2011;56:3829–34. doi:10.1016/j.electacta.2011.02.042.

    Article  CAS  Google Scholar 

  247. Ferreira VC, Melato AI, Silva AF, Abrantes LM. Conducting polymers with attached platinum nanoparticles towards the development of DNA biosensors. Electrochem Commun. 2011;13:993–6. doi:10.1016/j.elecom.2011.06.021.

    Article  CAS  Google Scholar 

  248. Gao H, Qi X, Chen Y, Sun W. Electrochemical deoxyribonucleic acid biosensor based on the self-assembly film with nanogold decorated on ionic liquid modified carbon paste electrode. Anal Chim Acta. 2011;704:133–8. doi:10.1016/j.aca.2011.07.044.

    Article  CAS  Google Scholar 

  249. Zhong G, Liu A, Chen X, Wang K, Lian Z, Liu Q, et al. Electrochemical biosensor based on nanoporous gold electrode for detection of PML/RARα fusion gene. Biosens Bioelectron. 2011;26:3812–7. doi:10.1016/j.bios.2011.02.039.

    Article  CAS  Google Scholar 

  250. Shervedani RK, Pourbeyram S. A modification free hybridization biosensor for detection of DNA sequence based on Zr(IV) ion glue mediated the adsorption on Au–MPA SAM electrode. Sens Actuators B. 2011;160:145–53. doi:10.1016/j.snb.2011.07.025.

    Article  CAS  Google Scholar 

  251. Jayakumar K, Rajesh R, Dharuman V, Venkatasan R, Hahn JH, Karutha Pandian S. Gold nano particle decorated graphene core first generation PAMAM dendrimer for label free electrochemical DNA hybridization sensing. Biosens Bioelectron. 2012;31:406–12. doi:10.1016/j.bios.2011.11.001.

    Article  CAS  Google Scholar 

  252. Liu M, Luo C, Peng H. Electrochemical DNA sensor based on methylene blue functionalized polythiophene as a hybridization indicator. Talanta. 2012;88:216–21. doi:10.1016/j.talanta.2011.10.035.

    Article  CAS  Google Scholar 

  253. Zhang W, Zheng X, Jiao K. Label-free and enhanced DNA sensing platform for PML/RARA fusion gene detection based on nano-ZnO functionalized carbon ionic liquid electrode. Sens Actuators B. 2012. doi:10.1016/j.snb.2011.12.090.

    Google Scholar 

  254. Wang Q, Gao FF, Zhang X, Zhang B, Li S, Hu Z, et al. Electrochemical characterization and DNA sensing application of a sphere-like CeO2–ZrO2 and chitosan nanocomposite formed on a gold electrode by one-step electrodeposition. Electrochim Acta. 2012;62:250–5. doi:10.1016/j.electacta.2011.12.020.

    Article  CAS  Google Scholar 

  255. Liu B, Hu J, Foord JS. Electrochemical detection of DNA hybridization by a zirconia modified diamond electrode. Electrochem Commun. 2012;19:46–9. doi:10.1016/j.elecom.2012.03.007.

    Article  CAS  Google Scholar 

  256. Xu C-X, Zhai Q-G, Liu Y-J, Huang K-J, Lu L, Li K-X. A novel electrochemical DNA biosensor construction based on layered CuS–graphene composite and Au nanoparticles. Anal Bioanal Chem. 2014;406:6943–51. doi:10.1007/s00216-014-7904-7.

    Article  CAS  Google Scholar 

  257. Rashid JIA, Yusof NA, Abdullah J, Hashim U, Hajian R. The utilization of SiNWs/AuNPs-modified indium tin oxide (ITO) in fabrication of electrochemical DNA sensor. Mater Sci Eng C. 2014;45:270–6. doi:10.1016/j.msec.2014.09.010.

    Article  CAS  Google Scholar 

  258. Fang L, Huang K, Zhang B, Liu Y, Zhang Q. A label-free electrochemistry biosensor based flower-like 3-dimensional ZnO superstructures for detection of DNA arrays. New J Chem. 2014;38:5918–24. doi:10.1039/C4NJ01218F.

    Article  CAS  Google Scholar 

  259. Wang X, Nan F, Zhao J, Yang T, Ge T, Jiao K. A label-free ultrasensitive electrochemical DNA sensor based on thin-layer MoS2 nanosheets with high electrochemical activity. Biosens Bioelectron. 2015;64:386–91. doi:10.1016/j.bios.2014.09.030.

    Article  CAS  Google Scholar 

  260. Zhang N, Zhang K, Zhang L, Wang H, Shi H, Wang C. A label-free electrochemical DNA sensor based on ZrO2/poly(thionine)/CNT modified electrode and its application for detecting CaMV35S transgene gene sequence. Anal Methods. 2015;7:3164–8. doi:10.1039/C5AY00384A.

    Article  CAS  Google Scholar 

  261. Amouzadeh Tabrizi M, Shamsipur M. A label-free electrochemical DNA biosensor based on covalent immobilization of salmonella DNA sequences on the nanoporous glassy carbon electrode. Biosens Bioelectron. 2015;69:100–5. doi:10.1016/j.bios.2015.02.024.

    Article  CAS  Google Scholar 

  262. Zhang W. Application of Fe3O4 nanoparticles functionalized carbon nanotubes for electrochemical sensing of DNA hybridization. J Appl Electrochem. 2016;46:559–66. doi:10.1007/s10800-016-0952-2.

    Article  CAS  Google Scholar 

  263. Torati SR, Reddy V, Yoon SS, Kim C. Electrochemical biosensor for Mycobacterium tuberculosis DNA detection based on gold nanotubes array electrode platform. Biosens Bioelectron. 2016;78:483–8. doi:10.1016/j.bios.2015.11.098.

    Article  CAS  Google Scholar 

  264. Yang T, Chen M, Kong Q, Luo X, Jiao K. Toward DNA electrochemical sensing by free-standing ZnO nanosheets grown on 2D thin-layered MoS2. Biosens Bioelectron. 2016. doi:10.1016/j.bios.2016.03.025.

    Google Scholar 

  265. Shahrokhian S, Salimian R, Kalhor HR. A simple label-free electrochemical DNA biosensor based on carbon nanotube–DNA interaction. RSC Adv. 2016;6:15592–8. doi:10.1039/C5RA20907B.

    Article  CAS  Google Scholar 

  266. Rafiee-Pour H-A, Behpour M, Keshavarz M. A novel label-free electrochemical miRNA biosensor using methylene blue as redox indicator: application to breast cancer biomarker miRNA-21. Biosens Bioelectron. 2016;77:202–7. doi:10.1016/j.bios.2015.09.025.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

François-Xavier Guillon acknowledges support from the program Investissement d’Avenir launched by the French Government and implemented by Agence Nationale de la Recherche with reference ANR—IDEX-000-02 PSL for a PhD fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Lazerges.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 563 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, T.H., Guillon, FX., Bigey, P. et al. Analysis of the evolution of the detection limits of electrochemical nucleic acid biosensors II. Anal Bioanal Chem 409, 4335–4352 (2017). https://doi.org/10.1007/s00216-017-0377-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0377-8

Keywords

Navigation