Skip to main content
Log in

Development of an optimal filter substrate for the identification of small microplastic particles in food by micro-Raman spectroscopy

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

When analysing microplastics in food, due to toxicological reasons it is important to achieve clear identification of particles down to a size of at least 1 μm. One reliable, optical analytical technique allowing this is micro-Raman spectroscopy. After isolation of particles via filtration, analysis is typically performed directly on the filter surface. In order to obtain high qualitative Raman spectra, the material of the membrane filters should not show any interference in terms of background and Raman signals during spectrum acquisition. To facilitate the usage of automatic particle detection, membrane filters should also show specific optical properties. In this work, beside eight different, commercially available membrane filters, three newly designed metal-coated polycarbonate membrane filters were tested to fulfil these requirements. We found that aluminium-coated polycarbonate membrane filters had ideal characteristics as a substrate for micro-Raman spectroscopy. Its spectrum shows no or minimal interference with particle spectra, depending on the laser wavelength. Furthermore, automatic particle detection can be applied when analysing the filter surface under dark-field illumination. With this new membrane filter, analytics free of interference of microplastics down to a size of 1 μm becomes possible. Thus, an important size class of these contaminants can now be visualized and spectrally identified.

A newly developed aluminium coated polycarbonate membrane filter enables automatic particle detection and generation of high qualitative Raman spectra allowing identification of small microplastics

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

PC:

Polycarbonate

PS:

Polystyrene

References

  1. Plastics Europe. Plastics—the facts 2015: an analysis of European plastics production, demand and waste data. 2015. http://www.plasticseurope.org/Document/plastics---the-facts-2015.aspx?Page=DOCUMENT&FolID=2. Accessed 18 Oct 2016.

  2. EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain). Statement on the presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA J. 2016;14(6):4501. doi:10.2903/j.efsa.2016.4501.30 pp

    Google Scholar 

  3. Song YK, Hong SH, Jang M, Kang J-H, Kwon OY, Han GM, et al. Large accumulation of micro-sized synthetic polymer particles in the sea surface microlayer. Environ. Sci. Technol. 2014;48(16):9014–21. doi:10.1021/es501757s.

    Article  CAS  Google Scholar 

  4. Eriksen M, Lebreton LCM, Carson HS, Thiel M, Moore CJ, Borerro JC et al. Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250000 tons afloat at sea. PloS One. 2014;9. doi:10.6084/10.1371/journal.pone.0111913.

  5. Eerkes-Medrano D, Thompson RC, Aldridge DC. Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res. 2015;75(0):63–82. doi:10.1016/j.watres.2015.02.012.

    Article  CAS  Google Scholar 

  6. Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway T, et al. Accumulation of microplastic on shorelines worldwide: sources and sinks. Environ. Sci. Technol. 2011;45(21):9175–9. doi:10.1021/es201811s.

    Article  CAS  Google Scholar 

  7. Thompson RC, Moore CJ, vom Saal FS, Swan SH. Plastics, the environment and human health: current consensus and future trends. Philos Trans R Soc B. 2009;364(1526):2153–66. doi:10.1098/rstb.2009.0053.

    Article  CAS  Google Scholar 

  8. Farrell P, Nelson K. Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environ Pollut. 2013;177(0):1–3. doi:10.1016/j.envpol.2013.01.046.

    Article  CAS  Google Scholar 

  9. Liebezeit G, Liebezeit E. Non-pollen particulates in honey and sugar. Food Addit Contam, Part A. 2013;30(12):2136–40. doi:10.1080/19440049.2013.843025.

    Article  CAS  Google Scholar 

  10. Liebezeit G, Liebezeit E. Synthetic particles as contaminants in German beers. Food Addit. Contam., Part A. 2014;31(9):1574–8. doi:10.1080/19440049.2014.945099.

    Article  CAS  Google Scholar 

  11. Mintenig S, Löder M, Gerdts G. Mikroplastik in Trinkwasser, Untersuchung im Trinkwasserversorgungsgebiet des Oldenburgisch-Ostfriesischen Wasserverbandes (OOWV) in Niedersachsen, Probenanalyse mittels Mikro-FTIR Spektroskopie. Helgoland: Oldenburgisch-Ostfriesischer Wasserverband (OOWV). Alfred-Wegener-Institut. 2014.

  12. Van Cauwenberghe L, Janssen CR. Microplastics in bivalves cultured for human consumption. Environ Pollut. 2014;193:65–70. doi:10.1016/j.envpol.2014.06.010.

    Article  CAS  Google Scholar 

  13. Yang D, Shi H, Li L, Li J, Jabeen K, Kolandhasamy P. Microplastic pollution in table salts from China. Environ Sci Technol. 2015;49(22):13622–7. doi:10.1021/acs.est.5b03163.

    Article  CAS  Google Scholar 

  14. Yoo J-W, Doshi N, Mitragotri S. Adaptive micro and nanoparticles: temporal control over carrier properties to facilitate drug delivery. Adv Drug Deliv Rev. 2011;63(14–15):1247–56. doi:10.1016/j.addr.2011.05.004.

    Article  CAS  Google Scholar 

  15. Schymanski D, Goldbeck C, Humpf H-U, Fürst P. Kunststoffpartikel sind überall - auch in Lebensmitteln? Nachr Chem. 2016;64:842–6.

    Article  Google Scholar 

  16. Lachenmeier DW, Kocareva J, Noack D, Kuballa T. Microplastic identification in German beer—an artefact of laboratory contamination? Dtsch. Lebensm.-Rundsch. 2015;111. Jahrgang:437–40.

  17. Käppler A, Fischer D, Oberbeckmann S, Schernewski G, Labrenz M, Eichhorn K-J, et al. Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? Anal Bioanal Chem. 2016;408(29):8377–91. doi:10.1007/s00216-016-9956-3.

    Article  Google Scholar 

  18. Käppler A, Windrich F, Loder MG, Malanin M, Fischer D, Labrenz M, et al. Identification of microplastics by FTIR and Raman microscopy: a novel silicon filter substrate opens the important spectral range below 1300 cm(-1) for FTIR transmission measurements. Anal Bioanal Chem. 2015;407(22):6791–801. doi:10.1007/s00216-015-8850-8.

    Article  Google Scholar 

  19. Imhof HK, Laforsch C, Wiesheu AC, Schmid J, Anger PM, Niessner R, et al. Pigments and plastic in limnetic ecosystems: a qualitative and quantitative study on microparticles of different size classes. Water Res. 2016;98:64–74. doi:10.1016/j.watres.2016.03.015.

    Article  CAS  Google Scholar 

  20. Frère L, Paul-Pont I, Moreau J, Soudant P, Lambert C, Huvet A, et al. A semi-automated Raman micro-spectroscopy method for morphological and chemical characterizations of microplastic litter. Mar Pollut Bull. 2016; doi:10.1016/j.marpolbul.2016.10.051.

    Google Scholar 

  21. Kamemoto LE, Misra AK, Sharma SK, Goodman MT, Luk H, Dykes AC, et al. Near-infrared micro-Raman spectroscopy for in vitro detection of cervical cancer. Appl Spectrosc. 2010;64(3):255–61. doi:10.1366/000370210790918364.

    Article  CAS  Google Scholar 

  22. Heinzler M, Kilgus R, Näher F, Paetzold H, Röhrer W, Schilling K, et al. Tabellenbuch Metall. 41st ed. Haan-Gruiten: Europa Lehrmittel; 1999.

    Google Scholar 

Download references

Acknowledgments

We thank the Bavarian State Ministry of the Environment and Consumer Protection for funding the project ‘Detection of microplastics in selected foods’, of which this work is part of. We gratefully acknowledge the financial support from the German Research Foundation (DFG) within the research project “In-Situ Microscopy with Electrons, X-rays and Scanning Probes” (GRK 1896) as well as the cluster of excellence "Engineering of Advanced Materials" at the Friedrich-Alexander-University Erlangen-Nuremberg. We thank Alexander Gumann from Max Planck Institute for the Science of Light for the metal coating of membrane filters. We would also like to thank Holger Kropf from Helmholtz-Zentrum Berlin für Materialien und Energie GmbH for taking the scanning electron microscopic (SEM) images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilhelm Dicke.

Ethics declarations

This paper does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oßmann, B.E., Sarau, G., Schmitt, S.W. et al. Development of an optimal filter substrate for the identification of small microplastic particles in food by micro-Raman spectroscopy. Anal Bioanal Chem 409, 4099–4109 (2017). https://doi.org/10.1007/s00216-017-0358-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0358-y

Keywords

Navigation