Skip to main content
Log in

In-situ hydrothermal synthesis of titanium dioxide nanorods on titanium wire for solid-phase microextraction of polycyclic aromatic hydrocarbons

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Titanium dioxide nanorods were prepared on the surface of titanium wire by hydrothermal synthesis for use as a solid-phase microextraction (SPME) fiber. The morphology of the SPME coating was observed by scanning electron microscopy (SEM). Employed in conjunction with gas chromatography (GC), the fiber was investigated with five polycyclic aromatic hydrocarbons (PAHs) and three terphenyls in direct-immersion extraction mode. Various parameters were optimized, such as the extraction time, the stirring rate, the extraction temperature, the ionic strength of the sample solution, and the desorption time. Under the optimized conditions, the SPME-GC analytical method achieved a low detection limit (0.003 μg L−1) and wide linear ranges (0.01–100 μg L−1 and 0.01–200 μg L−1) along with good correlation coefficients (0.9892–0.9962). The established method was also used to analyze rainwater and an aqueous solution of coal ash. The results indicated that this fiber could be applied in real-world environmental monitoring. The proposed fiber also exhibited excellent durability.

The schematic diagram of experimental process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–f
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Arthur CL, Pawliszyn J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem. 1990;62:2145–8.

    Article  CAS  Google Scholar 

  2. Arthur CL, Killam LM, Buchholz KD, Pawliszyn J, Berg JR. Automation and optimization of solid-phase microextraction. Anal Chem. 1992;64:1960–6.

    Article  CAS  Google Scholar 

  3. Chen J, Pawliszyn J. Solid phase microextraction coupled to high-performance liquid chromatography. Anal Chem. 1995;67:2530–3.

    Article  CAS  Google Scholar 

  4. Zhang ZY, Yang MJ, Pawliszyn J, Solid-phase microextraction. A solvent-free alternative for sample preparation. Anal Chem. 1994;66:844A–53.

    Article  CAS  Google Scholar 

  5. Guo M, Song W, Wang T, Li Y. Phenyl-functionalization of titanium dioxide-nanosheets coating fabricated on a titanium wire for selective solid-phase microextraction of polycyclic aromatic hydrocarbons from environment water samples. Talanta. 2015;144:998–1006.

    Article  CAS  Google Scholar 

  6. Wardencki W, Curyło J, Namieśnik J. Trends in solventless sample preparation techniques for environmental analysis. J Biochem Bioph Methods. 2007;70:275–88.

    Article  CAS  Google Scholar 

  7. Liu H, Liu L, Xiong Y, Yang X, Luan T. Simultaneous determination of UV filters and polycyclic musks in aqueous samples by solid-phase microextraction and gas chromatography-mass spectrometry. J Chromatogr A. 2010;1217:6747–53.

    Article  CAS  Google Scholar 

  8. Zhang X, Cai JB, Oakes KD, Breton F, Servos MR, Pawliszyn J. Development of the space-resolved solid-phase microextraction technique and its application to biological matrices. Anal Chem. 2009;81:7349–56.

    Article  CAS  Google Scholar 

  9. Kataoka H. Recent developments and applications of microextraction techniques in drug analysis. Anal Bioanal Chem. 2010;396:339–64.

    Article  CAS  Google Scholar 

  10. Campillo N, Peñalver R, López-García I, Hernández-Córdoba M. Headspace solid-phase microextraction for the determination of volatile organic sulphur and selenium compounds in beers, wines and spirits using gas chromatography and atomic emission detection. J Chromatogr A. 2009;1216:6735–40.

    Article  CAS  Google Scholar 

  11. Alpendurada MDF. Solid-phase microextraction: a promising technique for sample preparation in environmental analysis. J Chromatogr A. 2000;889:3–14.

    Article  CAS  Google Scholar 

  12. Pawliszyn J. Solid-phase microextraction: theory and practice. New York: Wiley-VCH; 1997.

    Google Scholar 

  13. Zeng J, Zhao C, Chong F, Cao Y, Subhan F, Wang Q, et al. Oriented ZnO nanorods grown on a porous polyaniline film as a novel coating for solid-phase microextraction. J Chromatogr A. 2013;1319:21–6.

    Article  CAS  Google Scholar 

  14. Wang T, Chen Y, Ma J, Qian Q, Jin Z, Zhang L, et al. Attapulgite nanoparticles-modified monolithic column for hydrophilic in-tube solid-phase microextraction of cyromazine and melamine. Anal Chem. 2016;88:1535–41.

    Article  CAS  Google Scholar 

  15. Jia Y, Su H, Wang Z, Wong YE, Chen X, Wang M, et al. Metal–organic framework@microporous organic network as adsorbent for solid-phase microextraction. Anal Chem. 2016;88:9364–7.

    Article  CAS  Google Scholar 

  16. Shih Y, Wang K, Singco B, Lin C, Huang H. Metal−organic framework−polymer composite as a highly efficient sorbent for sulfonamide adsorption and desorption: effect of coordinatively unsaturated metal site and topology. Langmuir. 2016;32:11465–73.

    Article  CAS  Google Scholar 

  17. Chen L, Huang X. Sensitive monitoring of fluoroquinolones in milk and honey using multiple monolithic fiber solid-phase microextraction coupled to liquid chromatography tandem mass spectrometry. J Agric Food Chem. 2016;64:8684–93.

    Article  CAS  Google Scholar 

  18. Patra S, Roy E, Madhuri R, Sharma PK. Fast and selective preconcentration of europium from wastewater and coal soil by graphene oxide/silane@Fe3O4 dendritic nanostructure. Environ Sci Technol. 2015;49:6117–26.

    Article  CAS  Google Scholar 

  19. Roya M, Fatemeh K. Fabrication of ciprofloxacin molecular imprinted polymer coating on a stainless steel wire as a selective solid-phase microextraction fiber for sensitive determination of fluoroquinolones in biological fluids and tablet formulation using HPLC-UV detection. J Pharm Biomed Anal. 2016;122:98–109.

    Article  Google Scholar 

  20. Pyrzynska K. Use of nanomaterials in sample preparation. TrAC Trends Anal Chem. 2013;43:100–8.

  21. Sun M, Feng J, Qiu H, Fan L, Li X, Luo C. CNT–TiO2 coating bonded onto stainless steel wire as a novel solid-phase microextraction fiber. Talanta. 2013;114:60–5.

    Article  CAS  Google Scholar 

  22. Yang B, Uchida M, Kim HM, Zhan X, Kokubo T. Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials. 2004;25:1003–10.

    Article  CAS  Google Scholar 

  23. Liu X, Chu PK, Ding C. Surface modification of titanium, titanium alloys and related material for biomedical applications. Mater Sci Eng R. 2004;47:49–121.

    Article  Google Scholar 

  24. Stankova NE, Dimitrov IG, Atanasov PA, Sakano T, Yata Y, Obara M. Proceedings of the EMRS 2009 Spring Meeting Symposium H: Synthesis, Processing and Characterization of Nanoscale Multi Functional Oxide Films II. Thin Solid Films. 2010;518:4597–602.

    Article  CAS  Google Scholar 

  25. Kefi BB, El Atrache LL, Kochkar H, Ghorbel A. TiO2 nanotubes as solid-phase extraction adsorbent for the determination of polycyclic aromatic hydrocarbons in environmental water samples. J Environ Sci. 2011;23:860–7.

    Article  CAS  Google Scholar 

  26. Jiang L, Zhang W. Electrodeposition of TiO2 nanoparticles on multiwalled carbon nanotube arrays for hydrogen peroxide sensing. Electroanal. 2009;21:988–93.

    Article  CAS  Google Scholar 

  27. Mashhadizadeh MH, Afshar E. Electrochemical investigation of clozapine at TiO2 nanoparticles modified carbon paste electrode and simultaneous adsorptive voltammetric determination of two antipsychotic drugs. Electrochim Acta. 2013;87:816–23.

    Article  CAS  Google Scholar 

  28. Türker AR. Separation, preconcentration and speciation of metal ions by solid phase extraction. Sep Purif Rev. 2012;41:169–206.

  29. Huang Y, Zhou Q, Xie G, Liu H, Lin H. Titanium dioxide nanotubes for solid phase extraction of benzoylurea insecticides in environmental water samples, and determination by high performance liquid chromatography with UV detection. Microchim Acta. 2011;172:109–15.

    Article  CAS  Google Scholar 

  30. Pinkse MH, Uitto PM, Hilhorst MJ, Ooms B, Heck AJR. Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-nanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem. 2004;76:3935–43.

  31. Chen C, Chen Y. Fe3O4/TiO2 core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted laser desorption/ionization mass spectrometry. Anal Chem. 2005;77:5912–9.

    Article  CAS  Google Scholar 

  32. Zhou Q, Ding Y, Xiao J, Liu G, Guo X. Investigation of the feasibility of TiO2 nanotubes for the enrichment of DDT and its metabolites at trace levels in environmental water samples. J Chromatogr A. 2007;1147:10–6.

    Article  CAS  Google Scholar 

  33. Liu H, Wang D, Ji L, Li J, Liu S, Liu X, et al. A novel TiO2 nanotube array/Ti wire incorporated solid-phase microextraction fiber with high strength, efficiency and selectivity. J Chromatogr A. 2010;1217:1898–903.

    Article  CAS  Google Scholar 

  34. Li Q, Wang X, Chen X, Wang M, Zhao R. In situ hydrothermal growth of ytterbium-based metal–organic framework on stainless steel wire for solid-phase microextraction of polycyclic aromatic hydrocarbons from environmental samples. J Chromatogr A. 2015;1415:11–9.

    Article  CAS  Google Scholar 

  35. Jiang S, Yi B, Zhang C, Liu S, Yu H, Shao Z. Vertically aligned carbon-coated titanium dioxide nanorod arrays on carbon paper with low platinum for proton exchange membrane fuel cells. J Power Sources. 2015;276:80–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC, nos. 21205048 and 21405061) and the Shandong Provincial Natural Science Foundation of China (no. ZR2014BQ019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Sun.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Feng, J., Bu, Y. et al. In-situ hydrothermal synthesis of titanium dioxide nanorods on titanium wire for solid-phase microextraction of polycyclic aromatic hydrocarbons. Anal Bioanal Chem 409, 4071–4078 (2017). https://doi.org/10.1007/s00216-017-0353-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0353-3

Keywords

Navigation