Skip to main content
Log in

Expanding the knowledge on dried blood spots and LC-MS-based protein analysis: two different sampling materials and six protein targets

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The combination of dried blood spots (DBS) and bottom-up LC-MS-based protein analysis was investigated in the present paper using six model proteins (1 mg/mL of each protein) with different physicochemical properties. Two different materials for DBS were examined: a water-soluble DBS material (carboxymethyl cellulose, (CMC)) and a commercially available (non-soluble) material (DMPK-C). The sample preparation was optimised regarding the water-soluble material and achieving acceptable repeatability of the signal was emphasised. Five microlitres of whole blood were deposited and dried on either CMC or DMPK-C. The samples were dissolved (CMC) or extracted (DMPK-C) prior to tryptic digest and matrix precipitation. The optimization of the sample preparation showed that an increased buffer concentration (100 mM ammonium bicarbonate) for dissolving the DBS samples gave better repeatability combined with a decrease in analyte signal. CMC seemed to add extra variability (RSD 8–60%) into the analysis compared to sample prepared without CMC (RSD 6–36%), although equal performance compared to DMPK-C material (RSD 13–60%) was demonstrated. The stability of the analytes was examined for different storage periods (1 and 4 weeks) and different storage temperatures (−25, 25, and 40 °C). The stability on both CMC (> 70% compared to reference) and DMPK-C (> 50% compared to reference) was acceptable for most of the peptides. This paper shows that both DBS materials can be used in targeted LC-MS-based protein analysis of proteins with different physicochemical properties.

Overview of the experimental set-up for expanding the knowledge of dried blood spots in LC-MS-based protein anaysis

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Guthrie R, Susi A. A simple phenylalanine method for detecting phenylketonuria in large popualtions of newborn infants. Pediatrics. 1963;32:338–43.

    CAS  Google Scholar 

  2. Sleczka BG, D’Arienzo CJ, Tymiak AA, Olah TV. Quantitation of therapeutic proteins following direct trypsin digestion of dried blood spot samples and detection by LC-MS-based bioanalytical methods in drug discovery. Bioanalysis. 2012;4(1):29–40. doi:10.4155/bio.11.293.

    Article  CAS  Google Scholar 

  3. Smit PW, Elliott I, Peeling RW, Mabey D, Newton PN. An overview of the clinical use of filter paper in the diagnosis of tropical diseases. Am J Trop Med Hyg. 2014;90(2):195–210. doi:10.4269/ajtmh.13-0463.

    Article  Google Scholar 

  4. Tretzel L, Thomas A, Geyer H, Delahaut P, Schanzer W, Thevis M. Determination of Synacthen((R)) in dried blood spots for doping control analysis using liquid chromatography tandem mass spectrometry. Anal Bioanal Chem. 2015;407(16):4709–20. doi:10.1007/s00216-015-8674-6.

    Article  CAS  Google Scholar 

  5. Jager NG, Rosing H, Schellens JH, Beijnen JH. Procedures and practices for the validation of bioanalytical methods using dried blood spots: a review. Bioanalysis. 2014;6(18):2481–514. doi:10.4155/bio.14.185.

    Article  CAS  Google Scholar 

  6. Henion J, Oliveira RV, Chace DH. Microsample analyses via DBS: challenges and opportunities. Bioanalysis. 2013;5(20):2547–65. doi:10.4155/bio.13.197.

    Article  CAS  Google Scholar 

  7. Edelbroek PM, van der Heijden J, Stolk LM. Dried blood spot methods in therapeutic drug monitoring: methods, assays, and pitfalls. Ther Drug Monit. 2009;31(3):327–36. doi:10.1097/FTD.0b013e31819e91ce.

    Article  Google Scholar 

  8. Lehmann S, Delaby C, Vialaret J, Ducos J, Hirtz C. Current and future use of “dried blood spot” analyses in clinical chemistry. Clin Chem Lab Med. 2013;51(10):1897–909. doi:10.1515/cclm-2013-0228.

    Article  CAS  Google Scholar 

  9. Kim JH, Woenker T, Adamec J, Regnier FE. Simple, miniaturized blood plasma extraction method. Anal Chem. 2013;85(23):11501–8. doi:10.1021/ac402735y.

    Article  CAS  Google Scholar 

  10. Denniff P, Spooner N. Volumetric absorptive microsampling: a dried sample collection technique for quantitative bioanalysis. Anal Chem. 2014;86(16):8489–95. doi:10.1021/ac5022562.

    Article  CAS  Google Scholar 

  11. Eibak LE, Hegge AB, Rasmussen KE, Pedersen-Bjergaard S, Gjelstad A. Alginate and chitosan foam combined with electromembrane extraction for dried blood spot analysis. Anal Chem. 2012;84(20):8783–9. doi:10.1021/ac301996n.

    Article  CAS  Google Scholar 

  12. Lodoen CP, Eng Eibak LE, Rasmussen KE, Pedersen-Bjergaard S, Andersen T, Gjelstad A. Storage of oral fluid as dried spots on alginate and chitosan foam—a new concept for oral fluid collection. Bioanalysis. 2013;5(3):317–25. doi:10.4155/bio.12.315.

    Article  CAS  Google Scholar 

  13. Rosting C, Gjelstad A, Halvorsen TG. Water-soluble dried blood spot in protein analysis: a proof-of-concept study. Anal Chem. 2015;87(15):7918–24. doi:10.1021/acs.analchem.5b01735.

    Article  CAS  Google Scholar 

  14. Rosting C, Sae CO, Gjelstad A, Halvorsen TG. Evaluation of water-soluble DBS for small proteins: a conceptual study using insulin as a model analyte. Bioanalysis. 2016;8(10):1051–65. doi:10.4155/bio-2016-0002.

    Article  CAS  Google Scholar 

  15. Ask KS, Pedersen-Bjergaard S, Gjelstad A. Dried blood spots on Carboxymethyl Cellulose sheets: rapid sample preparation based on dissolution and precipitation. Chromatographia. 2016:1-6. doi:10.1007/s10337-016-3039-7.

  16. Capelo JL, Carreira R, Diniz M, Fernandes L, Galesio M, Lodeiro C, et al. Overview on modern approaches to speed up protein identification workflows relying on enzymatic cleavage and mass spectrometry-based techniques. Anal Chim Acta. 2009;650(2):151–9. doi:10.1016/j.aca.2009.07.034.

    Article  CAS  Google Scholar 

  17. Hoofnagle AN, Wener MH. The fundamental flaws of immunoassays and potential solutions using tandem mass spectrometry. J Immunol Methods. 2009;347(1-2):3–11. doi:10.1016/j.jim.2009.06.003.

    Article  CAS  Google Scholar 

  18. Nature-editorial. Method of the year 2012. Nature. 2013;10:1.

  19. Liebler DC, Zimmerman LJ. Targeted quantitation of proteins by mass spectrometry. Biochemistry. 2013;52(22):3797–806. doi:10.1021/bi400110b.

    Article  CAS  Google Scholar 

  20. Martin NJ, Bunch J, Cooper HJ. Dried blood spot proteomics: surface extraction of endogenous proteins coupled with automated sample preparation and mass spectrometry analysis. J Am Soc Mass Spectrom. 2013;24(8):1242–9. doi:10.1007/s13361-013-0658-1.

    Article  CAS  Google Scholar 

  21. Kehler J, Akella N, Citerone D, Szapacs M. Application of DBS for the quantitative assessment of a protein biologic using on-card digestion LC-MS/MS or immunoassay. Bioanalysis. 2011;3(20):2283–90. doi:10.4155/bio.11.231.

    Article  CAS  Google Scholar 

  22. Haynes CA, Guerra SL, Fontana JC, DeJesus VR. HPLC-ESI-MS/MS analysis of hemoglobin peptides in tryptic digests of dried-blood spot extracts detects HbS, HbC, HbD, HbE, HbO-Arab, and HbG-Philadelphia mutations. Clin Chim Acta. 2013;424:191–200. doi:10.1016/j.cca.2013.06.007.

    Article  CAS  Google Scholar 

  23. deWilde A, Sadilkova K, Sadilek M, Vasta V, Hahn SH. Tryptic peptide analysis of ceruloplasmin in dried blood spots using liquid chromatography-tandem mass spectrometry: application to newborn screening. Clin Chem. 2008;54(12):1961–8. doi:10.1373/clinchem.2008.111989.

    Article  CAS  Google Scholar 

  24. Cox HD, Rampton J, Eichner D. Quantification of insulin-like growth factor-1 in dried blood spots for detection of growth hormone abuse in sport. Anal Bioanal Chem. 2013;405(6):1949–58. doi:10.1007/s00216-012-6626-y.

    Article  CAS  Google Scholar 

  25. Chambers AG, Percy AJ, Yang J, Camenzind AG, Borchers CH. Multiplexed quantitation of endogenous proteins in dried blood spots by multiple reaction monitoring-mass spectrometry. Mol Cell Proteomics. 2013;12(3):781–91. doi:10.1074/mcp.M112.022442.

    Article  CAS  Google Scholar 

  26. Chambers AG, Percy AJ, Yang J, Borchers CH. Multiple reaction monitoring enables precise quantification of 97 proteins in dried blood spots. Mol Cell Proteomics. 2015;14(11):3094–104. doi:10.1074/mcp.O115.049957.

    Article  CAS  Google Scholar 

  27. Chambers AG, Percy AJ, Hardie DB, Borchers CH. Comparison of proteins in whole blood and dried blood spot samples by LC/MS/MS. J Am Soc Mass Spectrom. 2013;24(9):1338–45. doi:10.1007/s13361-013-0678-x.

    Article  CAS  Google Scholar 

  28. Anderson L, Razavi M, Skates S, Anderson NG, Pearson TW. Squeezing more value from the analytes we have: personal baselines for multiple analytes in serial DBS. Bioanalysis. 2016. doi:10.4155/bio-2016-0088.

    Google Scholar 

  29. Svendsen KO, Larsen HR, Pedersen SA, Brenna I, Lundanes E, Wilson SR. Automatic filtration and filter flush for robust online solid-phase extraction liquid chromatography. J Sep Sci. 2011;34(21):3020–2. doi:10.1002/jssc.201100553.

    Article  CAS  Google Scholar 

  30. Carr SA, Abbatiello SE, Ackermann BL, Borchers C, Domon B, Deutsch EW, et al. Targeted peptide measurements in biology and medicine: best practices for mass spectrometry-based assay development using a fit-for-purpose approach. Mol Cell Proteomics. 2014;13(3):907–17. doi:10.1074/mcp.M113.036095.

    Article  CAS  Google Scholar 

  31. Cowans NJ, Suonpaa M, Kouru H, Wright D, Spencer K. Evaluation of a dried blood spot assay to measure prenatal screening markers pregnancy-associated plasma protein a and free beta-subunit of human chorionic gonadotropin. Clin Chem. 2013;59(6):968–75. doi:10.1373/clinchem.2012.194894.

    Article  CAS  Google Scholar 

  32. Ewles MF, Turpin PE, Goodwin L, Bakes DM. Validation of a bioanalytical method for the quantification of a therapeutic peptide, ramoplanin, in human dried blood spots using LC-MS/MS. Biomed Chromatogr. 2011;25(9):995–1002. doi:10.1002/bmc.1555.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Hilde Nilsen at Department of Pharmaceutical Bioscience, School of Pharmacy (University of Oslo), is acknowledged for sampling of whole blood.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trine Grønhaug Halvorsen.

Ethics declarations

The authors state that they have obtained appropriate institutional review board approval or have followed the principles outlined in the Declaration of Helsinki for research involving human participants

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent has been obtained from the participants involved.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 204 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosting, C., Gjelstad, A. & Halvorsen, T.G. Expanding the knowledge on dried blood spots and LC-MS-based protein analysis: two different sampling materials and six protein targets. Anal Bioanal Chem 409, 3383–3392 (2017). https://doi.org/10.1007/s00216-017-0280-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0280-3

Keywords

Navigation