Skip to main content
Log in

Comparison of Proteins in Whole Blood and Dried Blood Spot Samples by LC/MS/MS

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Dried blood spot (DBS) sampling methods are desirable for population-wide biomarker screening programs because of their ease of collection, transportation, and storage. Immunoassays are traditionally used to quantify endogenous proteins in these samples but require a separate assay for each protein. Recently, targeted mass spectrometry (MS) has been proposed for generating highly-multiplexed assays for biomarker proteins in DBS samples. In this work, we report the first comparison of proteins in whole blood and DBS samples using an untargeted MS approach. The average number of proteins identified in undepleted whole blood and DBS samples by liquid chromatography (LC)/MS/MS was 223 and 253, respectively. Protein identification repeatability was between 77 %–92 % within replicates and the majority of these repeated proteins (70 %) were observed in both sample formats. Proteins exclusively identified in the liquid or dried fluid spot format were unbiased based on their molecular weight, isoelectric point, aliphatic index, and grand average hydrophobicity. In addition, we extended this comparison to include proteins in matching plasma and serum samples with their dried fluid spot equivalents, dried plasma spot (DPS), and dried serum spot (DSS). This work begins to define the accessibility of endogenous proteins in dried fluid spot samples for analysis by MS and is useful in evaluating the scope of this new approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. McDade, T.W., Williams, S., Snodgrass, J.J.: What a drop can do: dried blood spots as a minimally invasive method for integrating biomarkers into population-based research. Demography 44, 899–925 (2007)

    Article  Google Scholar 

  2. Williams, S.R., McDade, T.W.: The use of dried blood spot sampling in the national social life, health, and aging project. J. Gerontol. Social Sci. 64B, i131–i136 (2009)

    Article  Google Scholar 

  3. Fokkema, M.R., Bakker, A.J., de Boer, F., Kooistra, J., de Vries, S., Wolthuis, A.: HbA1c measurements from dried blood spots: validation and patient satisfaction. Clin. Chem. Lab. Med. 47, 1259–1264 (2009)

    Article  CAS  Google Scholar 

  4. US_Government_Printing_Office; Available at: http://www.ecfr.gov/cgi-bin/retrieveECFR?gp=1&SID=a4de0961a755eb54d9357e025eec1db9&h=L&r=SECTION&n=49y2.1.1.3.9.4.25.13 (2013). Accessed March 12, 2013

  5. Chace, D.H., Kalas, T.A., Naylor, E.W.: Use of tandem mass spectrometry for multianalyte screening of dried blood specimens from newborns. Clin. Chem. 49, 1797–1817 (2003)

    Article  CAS  Google Scholar 

  6. Sahai, I., Marsden, D.: Newborn screening. Crit. Rev. Clin. Lab. Sci. 46, 55–82 (2009)

    Article  CAS  Google Scholar 

  7. Snijdewind, I.J.M., van Kampen, J.J.A., Fraaij, P.L.A., van der Ende, M.E., Osterhaus, A.D.M.E., Gruters, R.A.: Current and future applications of dried blood spots in viral disease management. Antiviral Res. 93, 309–321 (2012)

    Article  CAS  Google Scholar 

  8. Johannessen, A.: Dried blood spots in HIV monitoring: applications in resource-limited settings. Bioanalysis 2, 1893–1908 (2010)

    Article  CAS  Google Scholar 

  9. Xu, Y., Woolf, E.J., Agrawal, N.G.B., Kothare, P., Pucci, V., Bateman, K.P.: Merck’s perspective on the implementation of dried blood spot technology in clinical drug development—why, when, and how. Bioanalysis 5, 341–350 (2013)

    Article  CAS  Google Scholar 

  10. van Amsterdam, P., Waldrop, C.: The application of dried blood spot sampling in global clinical trials. Bioanalysis 2, 1783–1786 (2010)

    Article  Google Scholar 

  11. Edelbroek, P.M., van der Heijden, J., Stolk, L.M.L.: Dried blood spot methods in therapeutic drug monitoring: methods, assays, and pitfalls. Therapeut. Drug Monitor. 31, 327–336 (2009)

    Article  Google Scholar 

  12. Burnett, J.E.: Dried blood spot sampling: Practical considerations and recommendation for use with preclinical studies. Bioanalysis 3, 1099–1107 (2011)

    Article  CAS  Google Scholar 

  13. Whiteaker, J.R., Lin, C., Kennedy, J., Hou, L., Trute, M., Sokal, I., Yan, P., Schoenherr, R.M., Zhao, L., Voytovich, U.J., Kelly-Spratt, K.S., Krasnoselsky, A., Gafken, P.R., Hogan, J.M., Jones, L.A., Wang, P., Amon, L., Chodosh, L.A., Nelson, P.S., McIntosh, M.W., Kemp, C.J., Paulovich, A.G.: A targeted proteomics-based pipeline for verification of biomarkers in plasma. Nat. Biotechnol. 29, 625–634 (2011)

    Article  CAS  Google Scholar 

  14. Keshishian, H., Addona, T., Burgess, M., Kuhn, E., Carr, S.A.: Quantitative, multiplexed assays for low abundance proteins in plasma by targeted mass spectrometry and stable isotope dilution. Mol. Cell. Proteom. 6, 2212–2229 (2007)

    Article  CAS  Google Scholar 

  15. Domanski, D., Percy, A.J., Yang, J., Chambers, A.G., Hill, J.S., Cohen Freue, G.V., Borchers, C.H.: MRM-based multiplexed quantitation of 67 putative cardiovascular disease biomarkers in human plasma. Proteomics 12, 1222–1243 (2012)

    Article  CAS  Google Scholar 

  16. Hüttenhain, R., Soste, M., Selevsek, N., Röst, H., Sethi, A., Carapito, C., Farrah, T., Deutsch, E.W., Kusebauch, U., Moritz, R.L., Niméus-Malmström, E., Rinner, O., Aebersold, R.: Reproducible quantification of cancer-associated proteins in body fluids using targeted proteomics. Sci. Translational Med. 4, 1–13 (2012)

    Google Scholar 

  17. de Wilde, A., Sadilkova, K., Sadilek, M., Vasta, V., Hahn, S.H.: Tryptic peptide analysis of ceruloplasmin in dried blood spots using liquid chromatography–tandem mass spectrometry: Application to newborn screening. Clin. Chem. 54, 1961–1968 (2008)

    Article  Google Scholar 

  18. Daniel, Y.A., Turner, C., Haynes, R.M., Hunt, B.J., Dalto, R.N.: Quantification of hemoglobin A2 by tandem mass spectrometry. Clin. Chem. 53, 1448–1454 (2007)

    Article  CAS  Google Scholar 

  19. Boemer, F., Ketelslegers, O., Minon, J.-M., Bours, V., Schoos, R.: Newborn screening for sickle cell disease using tandem mass spectrometry. Clin. Chem. 54, 2036–2041 (2008)

    Article  CAS  Google Scholar 

  20. Chambers, A.G., Percy, A.J., Yang, J., Camenzind, A.G., Borchers, C.H.: Multiplexed quantitation of endogenous proteins in dried blood spots by multiple reaction monitoring mass spectrometry. Mol. Cell. Proteom. 12, 781–791 (2013)

    Article  CAS  Google Scholar 

  21. Uchikata, T., Matsubara, A., Fukusaki, E., Bamba, T.: High-throughput phospholipid profiling system based on supercritical fluid extraction-supercritical fluid chromatography/mass spectrometry for dried plasma spot analysis. J. Chromatog. A 1250, 69–75 (2012)

    Article  CAS  Google Scholar 

  22. Thompson, J.W., Zhang, H., Smith, P., Hillman, S., Moseley, M.A., Millington, D.S.: Extraction and analysis of carnitine and acylcarnitines by electrospray ionization tandem mass spectrometry directly from dried blood and plasma spots using a novel autosampler. Rapid Commun. Mass Spectrom. 26, 2548–2554 (2012)

    Article  Google Scholar 

  23. Barfield, M., Wheller, R.: Use of dried plasma spots in the determination of pharmacokinetics in clinical studies: Validation of a quantitative bioanalytical method. Anal. Chem. 83, 118–124 (2011)

    Article  CAS  Google Scholar 

  24. Maiolica, A., Borsotti, D., Rappsilber, J.: Self-made frits for nanoscale columns in proteomics. Proteomics 5, 3847–3850 (2005)

    Article  CAS  Google Scholar 

  25. Kyte, J., Doolittle, R.F.: A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132 (1982)

    Article  CAS  Google Scholar 

  26. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D., Bairoch, A.: Protein identification and analysis tools on the ExPASy server. In: Walker, J.M. (ed.) The proteomics protocols handbook, pp. 571–607. Humana Press, Totowa (2005)

    Chapter  Google Scholar 

  27. Roux-Dalvai, F., Gonzalez de Peredo, A., Simo, C., Guerrier, L., Bouyssie, D., Zanella, A., Citterio, A., Burlet-Schiltz, O., Boschetti, E., Righetti, P.G., Monsarrat, B.: Extensive analysis of the cytoplasmic proteome of human erythrocytes using the peptide ligand library technology and advanced mass spectrometry. Mol. Cell. Proteom. 7, 2254–2269 (2008)

    Article  CAS  Google Scholar 

  28. Tabb, D.L., Vega-Montoto, L., Rudnick, P.A., Variyath, A.M., Ham, A.-J.L., Bunk, D.M., Kilpatrick, L.E., Billheimer, D.D., Blackman, R.K., Cardasis, H.L., Carr, S.A., Clauser, K.R., Jaffe, J.D., Kowalski, K.A., Neubert, T.A., Regnier, F.E., Schilling, O.B., Tegeler, T.J., Wang, M., Wang, P., Whiteaker, J.R., Zimmerman, L.J., Fisher, S.J., Gibson, B.W., Kinsinger, C.R., Mesri, M., Rodriguez, H., Stein, S.E., Tempst, P., Paulovich, A.G., Liebler, D.C., Spiegelman, C.: Repeatability and reproducibility in proteomic identifications by liquid chromatography-tandem mass spectrometry. J. Proteome Res. 9, 761–776 (2010)

    Article  CAS  Google Scholar 

  29. Haudek, V.J., Slany, A., Gundacker, N.C., Wimmer, H., Drach, J., Gerner, C.: Proteome maps of the main human peripheral blood constituents. J. Proteome Res. 8, 3834–3843 (2009)

    Article  CAS  Google Scholar 

  30. Rai, A.J., Gelfand, C.A., Haywood, B.C., Warunek, D.J., Yi, J., Schuchard, M.D., Mehigh, R.J., Cockrill, S.L., Scott, G.B.I., Tammen, H., Schulz-Knappe, P., Speicher, D.W., Vitzthum, F., Haab, B.B., Siest, G., Chan, D.W.: HUPO plasma proteome project specimen collection and handling: Towards the standardization of parameters for plasma proteome samples. Proteomics 5, 3262–3277 (2005)

    Article  CAS  Google Scholar 

  31. Tuck, M.K., Chan, D.W., Chia, D., Godwin, A.K., Grizzle, W.E., Krueger, K.E., Rom, W., Sanda, M., Sorbara, O., Stass, S., Wang, W., Brenner, D.E.: Standard Operating procedures for serum and plasma collection: Early detection research network consensus statement standard operating procedure integration working group. J. Proteome Res. 8, 113–117 (2009)

    Article  CAS  Google Scholar 

  32. Gelfand, C.A., Omenn, G.S.: Preanalytical variables for plasma and serum proteome analyses. In: Ivanov, A.R., Lazarev, A.V. (eds.) Sample preparation in biological mass spectrometry, pp. 269–290. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors thank Genome Canada, Genome BC, and the Western Economic Diversification program for funding the Science and Technology Innovation Centre in Proteomics. In addition, the authors acknowledge Dr. Carol E. Parker for helpful discussions during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph H. Borchers.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 137 kb)

ESM 2

(XLSX 329 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chambers, A.G., Percy, A.J., Hardie, D.B. et al. Comparison of Proteins in Whole Blood and Dried Blood Spot Samples by LC/MS/MS. J. Am. Soc. Mass Spectrom. 24, 1338–1345 (2013). https://doi.org/10.1007/s13361-013-0678-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-013-0678-x

Key words

Navigation