Skip to main content

Advertisement

Log in

Preparation of quaternized cellulose/chitosan microspheres for selective enrichment of phosphopeptides

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

As one of the most important posttranslational modifications, protein phosphorylation plays an important role in vital movement. However, an efficiency enrichment treatment prior to MS detection is still a crucial step to protein phosphorylation analysis. In this work, a novel hybrid microsphere for efficient phosphopeptide enrichment was prepared by reverse-phase suspension polymerization of cellulose derivative and chitosan. The microspheres bore different kinds of amine groups and the main enrichment mechanism was based on anion exchange. This approach exhibited high selectivity for phosphopeptides from β-casein, α-casein, and non-fat milk. Three phosphopeptides could still be detected when the amount of β-casein was as low as 10 fmol. This study demonstrated a new attractive solid-phase support for phosphopeptide enrichment to meet the increasing need of phosphoproteomics analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Thingholm TE, Jensen ON, Larsen MR. Analytical strategies for phosphoproteomics. Proteomics. 2009;9(6):1451–68.

    Article  CAS  Google Scholar 

  2. Li XS, Wu JH, Zhao Y, Zhang WP, Gao Q, Guo L, et al. Preparation of magnetic polymer material with phosphate group and its application to the enrichment of phosphopeptides. J Chromatogr A. 2011;1218(25):3845–53.

    Article  CAS  Google Scholar 

  3. Batalha IL, Roque AC. Phosphopeptide enrichment using various magnetic nanocomposites: an overview. Methods Mol Biol. 2016;1355:193–209.

    Article  Google Scholar 

  4. Leitner A. Enrichment strategies in phosphoproteomics. Methods Mol Biol. 2016;1355:105–21.

    Article  Google Scholar 

  5. Wang ZG, Lv N, Bi WZ, Zhang JL, Ni JZ. Development of the affinity materials for phosphorylated proteins/peptides enrichment in phosphoproteomics analysis. ACS Appl Mater Interfaces. 2015;7(16):8377–92.

    Article  CAS  Google Scholar 

  6. Andersson L, Porath J. Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal Biochem. 1986;154(1):250–4.

    Article  CAS  Google Scholar 

  7. Posewitz MC, Tempst P. Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal Chem. 1999;71(14):2883–92.

    Article  CAS  Google Scholar 

  8. Yu Z, Han G, Sun S, Jiang X, Chen R, Wang F, et al. Preparation of monodisperse immobilized Ti(4+) affinity chromatography microspheres for specific enrichment of phosphopeptides. Anal Chim Acta. 2009;636(1):34–41.

    Article  CAS  Google Scholar 

  9. Zhao PX, Zhao Y, Guo XF, Wang H, Zhang HS. Isolation of phosphopeptides using zirconium-chlorophosphonazo chelate-modified silica nanoparticles. J Chromatogr A. 2011;1218(18):2528–39.

    Article  CAS  Google Scholar 

  10. Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jorgensen TJ. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics. 2005;4(7):873–86.

    Article  CAS  Google Scholar 

  11. Kweon HK, Hakansson K. Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis. Anal Chem. 2006;78(6):1743–9.

    Article  CAS  Google Scholar 

  12. Han L, Shan Z, Chen D, Yu X, Yang P, Tu B, et al. Mesoporous Fe2O3 microspheres: rapid and effective enrichment of phosphopeptides for MALDI-TOF MS analysis. J Colloid Interface Sci. 2008;318(2):315–21.

    Article  CAS  Google Scholar 

  13. Li Y, Liu Y, Tang J, Lin H, Yao N, Shen X, et al. Fe3O4@Al2O3 magnetic core-shell microspheres for rapid and highly specific capture of phosphopeptides with mass spectrometry analysis. J Chromatogr A. 2007;1172(1):57–71.

    Article  CAS  Google Scholar 

  14. Li Y, Qi D, Deng C, Yang P, Zhang X. Cerium ion-chelated magnetic silica microspheres for enrichment and direct determination of phosphopeptides by matrix-assisted laser desorption ionization mass spectrometry. J Proteome Res. 2008;7(4):1767–77.

    Article  CAS  Google Scholar 

  15. Wang ZG, Cheng G, Liu YL, Zhang JL, Sun DH, Ni JZ. Novel core-shell cerium(IV)-immobilized magnetic polymeric microspheres for selective enrichment and rapid separation of phosphopeptides. J Colloid Interface Sci. 2014;417:217–26.

    Article  CAS  Google Scholar 

  16. Jabeen F, Hussain D, Fatima B, Musharraf SG, Huck CW, Bonn GK, et al. Silica-lanthanum oxide: pioneer composite of rare-Earth metal oxide in selective phosphopeptides enrichment. Anal Chem. 2012;84(23):10180–5.

    Article  CAS  Google Scholar 

  17. Cheng G, Zhang JL, Liu YL, Sun DH, Ni JZ. Monodisperse REPO4 (RE = Yb, Gd, Y) hollow microspheres covered with nanothorns as affinity probes for selectively capturing and labeling phosphopeptides. Chemistry. 2012;18(7):2014–20.

    Article  CAS  Google Scholar 

  18. Wang F, Shi Z, Hu F, Xia Z, Wang L. Tuning of Ti-doped mesoporous silica for highly efficient enrichment of phosphopeptides in human placenta mitochondria. Anal Bioanal Chem. 2013;405(5):1683–93.

    Article  CAS  Google Scholar 

  19. Zhao M, Deng C, Zhang X. The design and synthesis of a hydrophilic core-shell-shell structured magnetic metal-organic framework as a novel immobilized metal ion affinity platform for phosphoproteome research. Chem Commun (Camb). 2014;50(47):6228–31.

    Article  CAS  Google Scholar 

  20. Xu S, Whitin JC, Yu TT, Zhou H, Sun D, Sue HJ, et al. Capture of phosphopeptides using alpha-zirconium phosphate nanoplatelets. Anal Chem. 2008;80(14):5542–9.

    Article  CAS  Google Scholar 

  21. Atakay M, Celikbicak O, Salih B. Amine-functionalized sol–gel-based lab-in-a-pipet-tip approach for the fast enrichment and specific purification of phosphopeptides in MALDI-MS applications. Anal Chem. 2012;84(6):2713–20.

    Article  CAS  Google Scholar 

  22. Chen CT, Wang LY, Ho YP. Use of polyethylenimine-modified magnetic nanoparticles for highly specific enrichment of phosphopeptides for mass spectrometric analysis. Anal Bioanal Chem. 2011;399(8):2795–806.

    Article  CAS  Google Scholar 

  23. Hargrove AE, Nieto S, Zhang T, Sessler JL, Anslyn EV. Artificial receptors for the recognition of phosphorylated molecules. Chem Rev. 2011;111(11):6603–782.

    Article  CAS  Google Scholar 

  24. Fischnaller M, Bakry R, Vallant RM, Huber LA, Bonn GK. C60-fullerene bound silica for the preconcentration and the fractionation of multiphosphorylated peptides. Anal Chim Acta. 2013;761:92–101.

    Article  CAS  Google Scholar 

  25. Dong M, Wu M, Wang F, Qin H, Han G, Dong J, et al. Coupling strong anion-exchange monolithic capillary with MALDI-TOF MS for sensitive detection of phosphopeptides in protein digest. Anal Chem. 2010;82(7):2907–15.

    Article  CAS  Google Scholar 

  26. Huang D, Yang Q, Jin S, Deng Q, Zhou P. Determination of global DNA methylation level by capillary electrophoresis using octyl-modified quaternized cellulose as an electrolyte additive. Anal Bioanal Chem. 2014;406(12):2771–7.

    Article  CAS  Google Scholar 

  27. Shen F, Hu Y, Guan P, Ren X. Facile preparation of titanium phosphate-modified chitosan for selective capture of phosphopeptides. J Sep Sci. 2013;36(3):540–7.

    Article  CAS  Google Scholar 

  28. Wang ZG, Zhang JL, Sun DH, Ni JZ. Novel Ti4+-chelated magnetic nanostructured affinity microspheres containing N-methylene phosphonic chitosan for highly selective enrichment and rapid separation of phosphopeptides. J Mater Chem B. 2014;2(39):6886–92.

    Article  CAS  Google Scholar 

  29. Shen F, Hu Y, Guan P, Ren X. Ti(4+)-phosphate functionalized cellulose for phosphopeptides enrichment and its application in rice phosphoproteome analysis. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;902:108–15.

    Article  CAS  Google Scholar 

  30. Duan J, He X, Zhang L. Magnetic cellulose-TiO2 nanocomposite microspheres for highly selective enrichment of phosphopeptides. Chem Commun (Camb). 2015;51(2):338–41.

    Article  Google Scholar 

  31. Zhou J, Chang C, Zhang R, Zhang L. Hydrogels prepared from unsubstituted cellulose in NaOH/urea aqueous solution. Macromol Biosci. 2007;7(6):804–9.

    Article  CAS  Google Scholar 

  32. Huang D, Yang Q, Jin S, Deng Q, Zhou P. Self-assembly of cellulose nanoparticles as electrolyte additive for capillary electrophoresis separation. J Chromatogr A. 2014;1367:148–53.

    Article  CAS  Google Scholar 

  33. Kjellstrom S, Jensen ON. Phosphoric acid as a matrix additive for MALDI MS analysis of phosphopeptides and phosphoproteins. Anal Chem. 2004;76(17):5109–17.

    Article  Google Scholar 

  34. Feng S, Ye M, Zhou H, Jiang X, Jiang X, Zou H, et al. Immobilized zirconium ion affinity chromatography for specific enrichment of phosphopeptides in phosphoproteome analysis. Mol Cell Proteomics. 2007;6(9):1656–65.

    Article  CAS  Google Scholar 

  35. Wu T, Shi J, Zhang C, Zhang L, Du Y. Highly specific phosphopeptide enrichment by titanium(IV) cross-linked chitosan composite. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1008:234–9.

    Article  CAS  Google Scholar 

  36. Yan Y, Zheng Z, Deng C, Zhang X, Yang P. Facile synthesis of Ti(4+)-immobilized Fe3O4@polydopamine core-shell microspheres for highly selective enrichment of phosphopeptides. Chem Commun (Camb). 2013;49(44):5055–7.

    Article  CAS  Google Scholar 

  37. Li XS, Pan YN, Zhao Y, Yuan BF, Guo L, Feng YQ. Preparation of titanium-grafted magnetic mesoporous silica for the enrichment of endogenous serum phosphopeptides. J Chromatogr A. 2013;1315:61–9.

    Article  CAS  Google Scholar 

  38. Xu LN, Li LP, Jin L, Bai Y, Liu HW. Guanidyl-functionalized graphene as a bifunctional adsorbent for selective enrichment of phosphopeptides. Chem Commun (Camb). 2014;50(75):10963–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Natural Science Foundation of Hubei Province of China (no. 214CFB179).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Zhou.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 539 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, L., Jin, S., Fan, M. et al. Preparation of quaternized cellulose/chitosan microspheres for selective enrichment of phosphopeptides. Anal Bioanal Chem 409, 3309–3317 (2017). https://doi.org/10.1007/s00216-017-0273-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0273-2

Keywords

Navigation