Skip to main content
Log in

Determination of volatile compounds in cider apple juices using a covalently bonded ionic liquid coating as the stationary phase in gas chromatography

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A chromatographic method for the separation of volatile compounds in Asturian cider apple juices has been developed. For this separation purpose, a monocationic imidazolium-based ionic liquid bearing a reactive terminal iodine atom was synthesized by a quaternization-anion exchange chemical sequence. Next, the gas chromatography (GC) stationary phase was prepared by covalently linking the imidazolium monolith to the reactive silanol groups of the inner capillary wall at 70 °C. This coated GC column exhibited good thermal stability (290 °C), as well as good efficiency (2000 plates/m) in the separation of volatile compounds from Asturian apple cider juices, and was characterized using the Abraham solvation parameter model. The intra-day and inter-day precision of the chromatographic method was evaluated, obtaining relative standard deviations from 3.7 to 12.9% and from 7.4 to 18.0%, respectively. Furthermore, recoveries from 82.5 to 122% were achieved.

Covalent bonding of an ionic liquid to inner column wall led to a great improvement of the separation efficiencies of stationary phases in gas chromatography

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schwab W, Davidovich-Rikanati R, Lewinsohn E. Biosynthesis of plant-derived flavor compounds. Plant J. 2008;54:712–32.

    Article  CAS  Google Scholar 

  2. Baldwin EA. Flavor. The commercial storage of fruits, vegetables, and florist and nursery stocks. Washington: Agricultural Research Service; 2004.

    Google Scholar 

  3. Díaz-Llorente D, Arias-Abrodo P, González-Álvarez J, Dapena E, Mangas-Alonso JJ, Gutiérrez-Álvarez MD, et al. A new analytical method to volatile compounds in cider apples: application to evaluate the Starch Index. Food Bioprocess Technol. 2012;6:2447–54.

    Article  Google Scholar 

  4. Sampaio K, Biasoto A, Da Silva M. Comparison of techniques for the isolation of volatiles from cashew apple juice. J Sci Food Agric. 2014;95:299–312.

    Article  Google Scholar 

  5. Arias-Abrodo P, Díaz-Llorente D, Junco-Corujedo S, Dapena E, Gutiérrez-Álvarez MD, Blanco-Gomis D. Characterisation of Asturian cider apples on the basis of their aromatic profile by high-speed gas chromatography and solid-phase microextraction. Food Chem. 2010;121:1312–8.

    Article  Google Scholar 

  6. Lasekan O, Kathib A, Juhari H, Patiram P, Lasekan S. Headspace solid-phase microextraction gas chromatography–mass spectrometry determination of volatile compounds in different varieties of African star apple fruit (Chrysophillum albidum). Food Chem. 2013;141:2089–97.

    Article  CAS  Google Scholar 

  7. Pawliszyn J. Solid-phase microextracion in perspective. In: Handbook of solid-phase microextraction. London: Elsevier; 2012.

    Google Scholar 

  8. Schmutzer G, Magdas A, David LI, Moldovan Z. Determination of the volatile components of apple juice using solid phase microextraction and gas chromatography–mass spectrometry. Anal Lett. 2014;47:1683–96.

    Article  CAS  Google Scholar 

  9. Lasekan O. Headspace solid-phase microextraction gas chromatography–mass spectrometry (HS-SPME-CC-MS) determination of volatile compounds in roasted plantains (French sombre and Dwarf Kalapua). LWT Food Sci Technol. 2011;46:536–41.

    Article  Google Scholar 

  10. Charapitsa SV, Kavalenka AN, Kulevich NV, Makoed NM, Mazanik AL, Sytova SN, et al. Direct determination of volatile compounds in spirit drinks by gas chromatography. J Agric Food Chem. 2013;61:2950–6.

    Article  CAS  Google Scholar 

  11. Díaz-Llorente D, Arias-Abrodo P, Dapena E, González-Álvarez J, Gutierrez-Alvarez MD, Blanco-Gomis D. Experimental design applied to the analysis of volatile compounds in apple juice by headspace solid-phase microextraction. J Sep Sci. 2011;34:1293–8.

    Article  Google Scholar 

  12. Anderson JL, Armstrong DW. High-stability ionic liquids. A new class of stationary phases for gas chromatography. Anal Chem. 2003;75:4851–8.

    Article  CAS  Google Scholar 

  13. Anderson JL, Armstrong DW. Immobilized ionic liquids as high-selectivity/high-temperature/high-stability gas chromatography stationary phases. Anal Chem. 2005;77:6453–62.

    Article  CAS  Google Scholar 

  14. Anderson JL, Armstrong DW, Wei G-T. Ionic liquids in analytical chemistry. Anal Chem. 2006;78:2892–902.

    Article  Google Scholar 

  15. Gónzalez-Álvarez J, Blanco-Gomis D, Arias-Abrodo P, Díaz-Llorente D, Busto E, Ríos-Lombardía N, et al. Polymeric imidazolium ionic liquids as valuable stationary phases in gas chromatography: chemical synthesis and full characterization. Anal Chim Acta. 2012;721:173–81.

    Article  Google Scholar 

  16. Gónzalez-Álvarez J, Blanco-Gomis D, Arias-Abrodo P, Díaz-Llorente D, Busto E, Ríos-Lombardía N, et al. Characterization of hexacationic imidazolium ionic liquids as effective and highly stable gas chromatography stationary phases. J Sep Sci. 2012;35:273–9.

    Article  Google Scholar 

  17. Lambertus GR, Crank JA, McGuigan ME, Kendler S, Armstrong DW, Sacks RD. Rapid determination of complex mixtures by dual-column gas chromatography with a novel stationary phase combination and spectrometric detection. J Chromatogr A. 2006;1135:230–40.

    Article  CAS  Google Scholar 

  18. Zeng AX, Chin S-T, Nolvachai Y, Kulsing C, Sidisky LM, Marriot PJ. Characterisation of capillary ionic liquid columns for gas chromatography–mass spectrometry analysis of fatty acid methyl esters. Anal Chim Acta. 2013;803:166–73.

    Article  CAS  Google Scholar 

  19. Qi M, Armstrong DW. Dicationic ionic liquid stationary phase for GC-MS analysis of volatile compounds in herbal plants. Anal Bioanal Chem. 2007;388:889–99.

    Article  CAS  Google Scholar 

  20. Gonzalez-Mendoza L, González-Álvarez J, Fernández-Gonzalo C, Arias-Abrodo P, Altava B, Luis SV, et al. Gas chromatographic analysis of fatty acid methyl esters of milk fat by an ionic liquid derived from L-phenylalanine as the stationary phase. Talanta. 2015;143:212–8.

    Article  Google Scholar 

  21. Delmonte P, Fardin-Kia AR, Kramer JKG, Mossoba MM, Sidisky L, Tybur-czy C, et al. Evaluation of highly polar ionic liquid gas chromatographic column for the determination of the fatty acids in milk fat. J Chromatogr A. 2012;1233:137–46.

    Article  CAS  Google Scholar 

  22. Zhang C, Ingram IC, Anderson JL. Identifying important structural features of ionic liquid stationary phases for the selective separation of nonpolar analytes by comprehensive two-dimensional gas chromatography. J Chromatogr A. 2015;1386:89–97.

    Article  CAS  Google Scholar 

  23. Baltazar QQ, Leininger SK, Anderson JL. Binary ionic liquids mixtures as gas chromatography stationary phases for improving the separation selectivity of alcohols and aromatic compounds. J Chromatogr A. 2008;1182:119–27.

    Article  CAS  Google Scholar 

  24. Ragonese C, Tranchida PQ, Sciarrone D, Mondello L. Conventional and fast gas chromatography analysis of biodiesel blends using and ionic liquid stationary phase. J Chromatogr A. 2009;1216:8992–7.

    Article  CAS  Google Scholar 

  25. Busto E, Gotor-Fernández V, Ríos-Lombardía N, García-Verdugo E, Alfonso I, García-Granda S, et al. Simple and straightforward synthesis of novel enantiopure ionic liquids via efficient enzymatic resolution of (±)-2-(1H-imidazol-1-yl)cyclohexanol. Tetrahedron Lett. 2007;48:5251–4.

    Article  CAS  Google Scholar 

  26. Ríos-Lombardía N, Busto E, Gotor-Fernández V, Gotor V, Porcar R, García-Verdugo E, et al. From salts to ionic liquids by systematic structural modifications: a rational approach towards the efficient modular synthesis of enantiopure imidazolium salts. Chem Eur J. 2010;16:836–47.

    Article  Google Scholar 

  27. Gónzalez-Álvarez J, Blanco-Gomis D, Arias-Abrodo P, Díaz-Llorente D, Busto E, Ríos-Lombardía N, et al. Evaluation of new ionic liquids as high stability selective stationary phases in gas chromatography. Anal Bioanal Chem. 2011;400:1209–16.

    Article  Google Scholar 

  28. González Álvarez J. Doctoral Thesis: new stationary phases for gas chromatography and coatings for solid phase microextraction based on ionic liquids. University of Oviedo; 2012.

  29. Torregrosa R, Pastor MI, Yus M. Solvent-free direct regioselective ring opening of epoxides with imidazoles. Tetrahedron. 2007;63:469–73.

    Article  CAS  Google Scholar 

  30. Pello-Palma J, Mangas-Alonso JJ, Dapena E, González-Álvarez J, Díez J, Gutiérrez-Álvarez MD, et al. Characterization of volatile compounds in new cider apple genotypes using multivariate analysis. Food Anal. Method. doi: 10.1007/s12161-016-0521-7

  31. Abraham MH, Poole CF, Poole SK. Classification of stationary phases and other materials by gas chromatography. J Chromatogr A. 1999;842:79–114.

    Article  CAS  Google Scholar 

  32. Poole CF, Atapattu SN, Poole SK, Bell AK. Determination of solute descriptors by chromatographic methods. Anal Chim Acta. 2009;652:32–53.

    Article  CAS  Google Scholar 

  33. Vitha M, Carr PW. The chemical interpretation and practice of linear solvation energy relationships in chromatography. J Chromatogr A. 2006;1126:143–94.

    Article  CAS  Google Scholar 

  34. Zhao Q, Anderson JL. Highly selective GC stationary phases consisting of binary mixtures of polymeric ionic liquids. J Sep Sci. 2010;33:79–87.

    Article  Google Scholar 

  35. Poole CF, Poole SK. Ionic liquids stationary phases for gas chromatography. J Sep Sci. 2011;34:888–900.

    Article  CAS  Google Scholar 

  36. Poole CF, Poole SK. Column selectivity from the perspective of the solvation parameter model. J Chromatogr A. 2002;965:263–99.

    Article  CAS  Google Scholar 

  37. Poole SK, Poole CF. Chemometric evaluation of the solvent properties of liquid ionic salts. Analyst. 1995;120:289–94.

    Article  CAS  Google Scholar 

  38. Lenca N, Poole CF. A system map for the ionic liquid stationary phase 1,9-Di(3-vinylimidazolium)nonane Bis(trifluoromethylsulfonyl)imide. Chromatographia. 2015;78:81–8.

    Article  CAS  Google Scholar 

  39. Wei Q, Qi M, Yang H, Fu R. Separation characteristics of ionic liquids grafted polymethylsiloxanes stationary phases for capillary GC. Chromatographia. 2011;74:717–24.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Instituto Nacional de Innovación Agraria (grant number: INIA-12-RTA2012-00118-C03-02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jaime González-Álvarez or Pilar Arias-Abrodo.

Ethics declarations

Conflict of interest

All authors declare that they do not have a conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 383 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pello-Palma, J., González-Álvarez, J., Gutiérrez-Álvarez, M.D. et al. Determination of volatile compounds in cider apple juices using a covalently bonded ionic liquid coating as the stationary phase in gas chromatography. Anal Bioanal Chem 409, 3033–3041 (2017). https://doi.org/10.1007/s00216-017-0250-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0250-9

Keywords

Navigation