Skip to main content
Log in

Systematic comparison of static and dynamic headspace sampling techniques for gas chromatography

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Six automated, headspace-based sample preparation techniques were used to extract volatile analytes from water with the goal of establishing a systematic comparison between commonly available instrumental alternatives. To that end, these six techniques were used in conjunction with the same gas chromatography instrument for analysis of a common set of volatile organic carbon (VOC) analytes. The methods were thereby divided into three classes: static sampling (by syringe or loop), static enrichment (SPME and PAL SPME Arrow), and dynamic enrichment (ITEX and trap sampling). For PAL SPME Arrow, different sorption phase materials were also included in the evaluation. To enable an effective comparison, method detection limits (MDLs), relative standard deviations (RSDs), and extraction yields were determined and are discussed for all techniques. While static sampling techniques exhibited sufficient extraction yields (approx. 10–20 %) to be reliably used down to approx. 100 ng L−1, enrichment techniques displayed extraction yields of up to 80 %, resulting in MDLs down to the picogram per liter range. RSDs for all techniques were below 27 %. The choice on one of the different instrumental modes of operation (aforementioned classes) was thereby the most influential parameter in terms of extraction yields and MDLs. Individual methods inside each class showed smaller deviations, and the least influences were observed when evaluating different sorption phase materials for the individual enrichment techniques. The option of selecting specialized sorption phase materials may, however, be more important when analyzing analytes with different properties such as high polarity or the capability of specific molecular interactions.

PAL SPME Arrow during the extraction of volatile analytes from the headspace of an aqueous sample

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aguinaga N, Campillo N, Viñas P, Hernández-Córdoba M. A headspace solid-phase microextraction procedure coupled with gas chromatography–mass spectrometry for the analysis of volatile polycyclic aromatic hydrocarbons in milk samples. Anal Bioanal Chem. 2008;391(3):753–8.

    Article  CAS  Google Scholar 

  2. Kolb B, Ettre LS. Static headspace-gas chromatography: theory and practice. New York: Wiley-VCH; 1997.

    Google Scholar 

  3. Pawliszyn J, Zhang Z. Headspace solid-phase microextraction. Anal Chem. 1993;65:1843–52.

    Article  Google Scholar 

  4. Curvers J, Noy T, Cramers C, Rijks J. Possibilities and limitations of dynamic headspace sampling as a pre-concentration technique for trace analysis of organics by capillary gas chromatography. J Chromatogr A. 1984;289:171–82.

    Article  CAS  Google Scholar 

  5. Reinert KH, Hunter JV, Sabatino T. Dynamic heated headspace analyses of volatile organic compounds present in fish tissue samples. J Agric Food Chem. 1983;31(5):1057–60.

    Article  CAS  Google Scholar 

  6. Van Durme J, Demeestere K, Dewulf J, et al. Accelerated solid-phase dynamic extraction of toluene from air. J Chromatogr A. 2007;1175(2):145–53.

    Article  Google Scholar 

  7. Bigus P, Tsakovski S, Simeonov V, Namieśnik J, Tobiszewski M. Hasse diagram as a green analytical metrics tool: ranking of methods for benzo[a]pyrene determination in sediments. Anal Bioanal Chem. 2016;408(14):3833–41.

    Article  CAS  Google Scholar 

  8. Flórez Menéndez JC, Fernández Sánchez ML, Sánchez Urı́a JE, Fernández Martı́nez E, Sanz-Medel A. Static headspace, solid-phase microextraction and headspace solid-phase microextraction for BTEX determination in aqueous samples by gas chromatography. Anal Chim Acta. 2000;415(1–2):9–20.

    Article  Google Scholar 

  9. Miller ME, Stuart JD. Comparison of gas-sampled and SPME-sampled static headspace for the determination of volatile flavor components. Anal Chem. 1999;71(1):23–7.

    Article  CAS  Google Scholar 

  10. Povolo M, Contarini G. Comparison of solid-phase microextraction and purge-and-trap methods for the analysis of the volatile fraction of butter. J Chromatogr A. 2003;985(1-2):117–25.

  11. Schulz K, Dreßler J, Sohnius E-M, Lachenmeier DW. Determination of volatile constituents in spirits using headspace trap technology. J Chromatogr A. 2007;1145(1–2):204–9.

    Article  CAS  Google Scholar 

  12. Westland JL, Dorman FL. Comparison of SPME and static headspace analysis of blood alcohol concentration utilizing two novel chromatographic stationary phases. Forensic Sci Int. 2013;231(1–3):E50–6.

    Article  CAS  Google Scholar 

  13. Spietelun A, Kloskowski A, Chrzanowski W, Namieśnik J. Understanding solid-phase microextraction: key factors influencing the extraction process and trends in improving the technique. Chem Rev. 2012;113(3):1667–85.

    Article  Google Scholar 

  14. Kremser A, Jochmann MA, Schmidt TC. PAL SPME arrow—evaluation of a novel solid-phase microextraction device for freely dissolved PAHs in water. Anal Bioanal Chem. 2016;408(3):943–52.

    Article  CAS  Google Scholar 

  15. Jochmann MA, Yuan X, Schilling B, Schmidt TC. In-tube extraction for enrichment of volatile organic hydrocarbons from aqueous samples. J Chromatogr A. 2008;1179(2):96–105.

    Article  CAS  Google Scholar 

  16. Laaks J, Jochmann MA, Schilling B, Schmidt TC. In-tube extraction of volatile organic compounds from aqueous samples: an economical alternative to purge and trap enrichment. Anal Chem. 2010;82(18):7641–8.

    Article  CAS  Google Scholar 

  17. Laaks J, Jochmann MA, Schilling B, Schmidt TC. Optimization strategies of in-tube extraction (ITEX) methods. Anal Bioanal Chem. 2015;407(22):6827–38.

    Article  CAS  Google Scholar 

  18. Endo S, Brown TN, Goss K-U. General model for estimating partition coefficients to organisms and their tissues using the biological compositions and polyparameter linear free energy relationships. Environ Sci Technol. 2013;47(12):6630–9.

    CAS  Google Scholar 

  19. Endo S, Schmidt TC. Prediction of partitioning between complex organic mixtures and water: application of polyparameter linear free energy relationships. Environ Sci Technol. 2006;40(2):536–45.

    Article  CAS  Google Scholar 

  20. Sprunger L, Proctor A, Acree WL, Abraham MH. Characterization of the sorption of gaseous and organic solutes onto polydimethyl siloxane solid-phase microextraction surfaces using the Abraham model. J Chromatogr A. 2007;1175:162–73.

    Article  CAS  Google Scholar 

  21. Zimmermann T, Ensinger WJ, Schmidt TC. Depletion solid-phase microextraction for the evaluation of fiber-sample partition coefficients of pesticides. J Chromatogr A. 2006;1102(1–2):51–9.

    Article  CAS  Google Scholar 

  22. Lamani X, Horst S, Zimmermann T, Schmidt TC. Determination of aromatic amines in human urine using comprehensive multi-dimensional gas chromatography mass spectrometry (GCxGC-qMS). Anal Bioanal Chem. 2015;407(1):241–52.

    Article  CAS  Google Scholar 

  23. Ridgway K, Lalljie SPD, Smith RM. Use of in-tube sorptive extraction techniques for determination of benzene, toluene, ethylbenzene and xylenes in soft drinks. J Chromatogr A. 2007;1174(1–2):20–6.

    Article  CAS  Google Scholar 

  24. Namieśnik J, Zygmunt B, Jastrzebska A. Application of solid-phase microextraction for determination of organic vapours in gaseous matrices. J Chromatogr A. 2000;885(1–2):405–18.

    Article  Google Scholar 

  25. Keith LH, Crummett W, Deegan Jr J, Libby RA, Taylor JK, Wentler G. Principles of environmental analysis. Anal Chem. 1983;55(14):2210–8.

    Article  CAS  Google Scholar 

  26. Cavalcante RM, de Andrade MVF, Marins RV, Oliveira LDM. Development of a headspace-gas chromatography (HS-GC-PID-FID) method for the determination of VOCs in environmental aqueous matrices: Optimization, verification and elimination of matrix effect and VOC distribution on the Fortaleza Coast, Brazil. Microchem J. 2010;96(2):337–43.

    Article  CAS  Google Scholar 

  27. DIN 32465:2008–11, Chemische Analytik - Nachweis-, Erfassungs- und Bestimmungsgrenze unter Wiederholbedingungen - Begriffe, Verfahren, Auswertung. 2008.

  28. Arbeitskreis NA 119-01-03-02 AK. Validierungsdokument zur Norm DIN 38 407–41. Primäre Validierung genormter Verfahren zur Wasser-, Abwasser- und Schlammuntersuchung. 2011.

  29. Barani F, Dell’Amico N, Griffone L, Santoro M, Tarabella C. Determination of volatile organic compounds by headspace trap. J Chromatogr Sci. 2006;44(10):625–30.

    Article  CAS  Google Scholar 

  30. Lord HL, Zhan W, Pawliszyn J. Fundamentals and applications of needle trap devices: a critical review. Anal Chim Acta. 2010;677(1):3–18.

    Article  CAS  Google Scholar 

  31. Alonso M, Cerdan L, Godayol A, Antico E, Sanchez JM. Headspace needle-trap analysis of priority volatile organic compounds from aqueous samples: application to the analysis of natural and waste waters. J Chromatogr A. 2011;1218(45):8131–9.

    Article  CAS  Google Scholar 

  32. Laaks J. Development and validation of novel solventless microextraction techniques in gas chromatography. Ph.D. Thesis, University of Duisburg-Essen: Essen, Germany; 2013.

  33. Wardencki W, Curyło J, Namieśnik J. Trends in solventless sample preparation techniques for environmental analysis. J Biochem Biophys Methods. 2007;70(2):275–88.

    Article  CAS  Google Scholar 

  34. Jakubowska N, Polkowska Ż, Kujawski W, Konieczka P, Namieśnik J. A comparison of three solvent-free techniques coupled with gas chromatography for determining trihalomethanes in urine samples. Anal Bioanal Chem. 2007;388(3):691–8.

    Article  CAS  Google Scholar 

  35. Meyer-Monath M, Beaumont J, Morel I, Rouget F, Tack K, Lestremau F. Analysis of BTEX and chlorinated solvents in meconium by headspace-solid-phase microextraction gas chromatography coupled with mass spectrometry. Anal Bioanal Chem. 2014;406(18):4481–90.

    Article  CAS  Google Scholar 

  36. Jeleń HH, Wlazły K, Wa̧sowicz E, Kamiński E. Solid-phase microextraction for the analysis of some alcohols and esters in beer: comparison with static headspace method. J Agric Food Chem. 1998;46(4):1469–73.

    Article  Google Scholar 

  37. Sriseadka T, Wongpornchai S, Kitsawatpaiboon P. Rapid method for quantitative analysis of the aroma impact compound, 2-acetyl-1-pyrroline, in fragrant rice using automated headspace gas chromatography. J Agric Food Chem. 2006;54(21):8183–9.

    Article  CAS  Google Scholar 

  38. U.S. Pharmacopeial Convention. Method <467 > Residual Solvents. 2007.

  39. Konieczka P, Namieśnik J. Estimating uncertainty in analytical procedures based on chromatographic techniques. J Chromatogr A. 2010;1217(6):882–91.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support by CTC Analytics AG concerning the autosamplers that were used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten C. Schmidt.

Ethics declarations

Conflict of interest

No conflict of interest influenced the work presented herein. The findings and conclusions in this report are those of the authors and do not represent the official views or positions of the supporting company.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1156 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kremser, A., Jochmann, M.A. & Schmidt, T.C. Systematic comparison of static and dynamic headspace sampling techniques for gas chromatography. Anal Bioanal Chem 408, 6567–6579 (2016). https://doi.org/10.1007/s00216-016-9843-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9843-y

Keywords

Navigation