Skip to main content
Log in

A comparison of three solvent-free techniques coupled with gas chromatography for determining trihalomethanes in urine samples

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The analysis of volatile organic compounds in samples of biological fluids characterized by complex matrices is highly challenging. This paper presents a comparison of the results obtained in this field using three solvent-free techniques: thin-layer headspace with autogenous generation of liquid sorbent (TLHS) and membrane separation of the trace substances (pervaporation, PV), both of which are coupled to direct aqueous injection gas chromatography–electron capture detection (TLHS–DAI–GC–ECD and PV–DAI–GC–ECD), as well as conventional static headspace analysis followed by GC analysis with ECD detection (HS–GC–ECD). Basic validation parameters of the HS–GC–ECD, TLHS–DAI–GC–ECD and PV–DAI–GC–ECD procedures were calculated for water and urine samples. The calibration curves for all procedures were linear within the concentration range examined. The intermediate precisions of the procedures were good and reached about 10% (for all analytes) for HS–GC–ECD and TLHS–DAI–GC–ECD. The poorest results were obtained for PV–DAI–GC–ECD: about 20% for all analytes. The lowest method detection limits were obtained for the TLHS–DAI–GC–ECD procedure: below 0.0022 μg/L for all analytes. The enrichment factors did not differ significantly between water and urine samples, indicating little or no matrix effect in all procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Giardino NJ, Andelman J (1996) J Expo Anal Environ Epidemiol 6:413–423

    CAS  Google Scholar 

  2. Tancrede M, Yanagisawa Y, Wilson R (1992) Atmos Environ 26A:1103–1111

    CAS  Google Scholar 

  3. Dodds L, King W, Woolcott Ch, Pole J (1999) Epidemiology 10:233–237

    Article  CAS  Google Scholar 

  4. Polkowska Ż, Namieśnik J, Czerwiński J, Zygmunt B (1996) Int J Food Sci Technol 31:378–395

    Google Scholar 

  5. Ukai H, Inui S, Takada S, Dendo J, Ogawa J, Isobe K, Ashida T, Tamura M, Tabuki K, Ikeda M (1997) Int Arch Occup Environ Health 70:385–392

    Article  CAS  Google Scholar 

  6. Chao Ch Y, Chan GY (2001) Atmos Environ 35:5895–5913

    Article  Google Scholar 

  7. Polkowska Ż, Górecki T, Namieśnik J (2001) Am Clin Lab 20:38–43

    CAS  Google Scholar 

  8. Aggazzotti G, Fantuzzi G, Righi E, Predieri G (1998) Sci Total Environ 217:155–163

    Article  CAS  Google Scholar 

  9. Aggazzotti G, Fantuzzi G, Righi E, Predieri G (1995) J Chromatogr A 710:181–190

    Article  CAS  Google Scholar 

  10. Lindstrom AB, Pleil JD, Berkoff DC (1997) Environ Health Perspect 105:636–642

    Article  CAS  Google Scholar 

  11. Pohanish RP(eds)(2002) Sittig’s handbook of toxic and hazardous chemicals and carcinogens. Noyes, Norwich, UK

  12. Batterman S, Zhang L, Wang S, Franzblau A (2002) Sci Total Environ 284:237–247

    Article  CAS  Google Scholar 

  13. Wight JM, Schwartz J, Dockery DW (2003) Occup Environ Med 60:173–180

    Article  Google Scholar 

  14. Kuráň P, Soják L (1996) J Chromatogr A 733:119–141

    Article  Google Scholar 

  15. Ketola RA, Virkki VT, Ojala M, Komppa V, Kotiaho T (1997) Talanta 44:373–382

    Article  CAS  Google Scholar 

  16. Polkowska Ż, Kozłowska K, Namieśnik J, Przyjazny A (2004) Crit Rev Anal Chem 34:105–119

    Article  CAS  Google Scholar 

  17. Dewulf J, van Langenhove H (2002) Trends Anal Chem 21:637–646

    Article  CAS  Google Scholar 

  18. Furuki K, Ukai H, Okamoto S, Takada S, Kawai T, Miyama YK, Mitsuyoshi K, Zhang ZW, Higashikawa K, Ikeda M (2000) Int Arch Occup Environ Health 73:221–227

    Article  CAS  Google Scholar 

  19. Namieśnik J, Wardencki W (2000) J High Res Chromatogr 23:297–303

    Google Scholar 

  20. Wardencki W, Namieśnik J (2002) Pol J Environ Stud 11:185–187

    CAS  Google Scholar 

  21. Nakahama T, Fukuhara M, Inouye Y (1997) J Toxicol Environ Health 43:280–284

    CAS  Google Scholar 

  22. Imbriani M, Niu Q, Negri S, Ghittori S (2001) Ind Health 39:225–230

    CAS  Google Scholar 

  23. Pierce CH, Chen Y, Dills RL, Kalman DA, Morgan MS (2002) Toxicol Lett 129:65–76

    Article  CAS  Google Scholar 

  24. Polkowska Ż, Górecki T, Namieśnik J (2001) Am Clin Lab 9:38–43

    Google Scholar 

  25. Polkowska Ż, Kozłowska K, Górecki T, Namieśnik J (2003) Chemosphere 53:899–909

    Article  CAS  Google Scholar 

  26. Polkowska Ż, Kozłowski E, Górecki T, Namieśnik J (1999) Toxicol Environ Chem 68:1–11

    CAS  Google Scholar 

  27. Selecki A, Gawroński R (eds)(1992) Permeation methods. In: Fundamentals of designing selected mixture separation processes (in Polish). WNT, Warszawa

  28. Kujawski W, Kerres J, Roszak R (2003) J Membr Sci 218:211–218

    Article  CAS  Google Scholar 

  29. Kujawski W (2000) Sep Sci Technol 35:89–108

    Article  CAS  Google Scholar 

  30. Jakubowska N, Kujawski W, Polkowska Ż, Namieśnik J (2007) Int J Environ Anal Chem (in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Jakubowska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakubowska, N., Polkowska, Ż., Kujawski, W. et al. A comparison of three solvent-free techniques coupled with gas chromatography for determining trihalomethanes in urine samples. Anal Bioanal Chem 388, 691–698 (2007). https://doi.org/10.1007/s00216-007-1259-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1259-2

Keywords

Navigation