Skip to main content
Log in

Oxytetracycline recovery from aqueous media using computationally designed molecularly imprinted polymers

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Polymers for recovery/removal of the antimicrobial agent oxytetracycline (OTC) from aqueous media were developed with use of computational design and molecular imprinting. 2-Hydroxyethyl methacrylate, 2-acrylamide-2-methylpropane sulfonic acid (AMPS), and mixtures of the two were chosen according to their predicted affinity for OTC and evaluated as functional monomers in molecularly imprinted polymers and nonimprinted polymers. Two levels of AMPS were tested. After bulk polymerization, the polymers were crushed into particles (200–1000 μm). Pressurized liquid extraction was implemented for template removal with a low amount of methanol (less than 20 mL in each extraction) and a few extractions (12–18 for each polymer) in a short period (20 min per extraction). Particle size distribution, microporous structure, and capacity to rebind OTC from aqueous media were evaluated. Adsorption isotherms obtained from OTC solutions (30–110 mg L-1) revealed that the polymers prepared with AMPS had the highest affinity for OTC. The uptake capacity depended on the ionic strength as follows: purified water > saline solution (0.9 % NaCl) > seawater (3.5 % NaCl). Polymer particles containing AMPS as a functional monomer showed a remarkable ability to clean water contaminated with OTC. The usefulness of the stationary phase developed for molecularly imprinted solid-phase extraction was also demonstrated.

Selection of functional monomers by molecular modeling renders polymer networks suitable for removal of pollutants from contaminated aqueous environments, under either dynamic or static conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Moreno-Bondi MC. Antibiotics in food and environmental samples. Anal Bioanal Chem. 2009;395:875–6.

    Article  CAS  Google Scholar 

  2. Peng FJ, Zhou LZ, Ying GG, Liu YS, Zhao JL. Antibacterial activity of the soil-bound antimicrobials oxytetracycline and ofloxacin. Environ Toxicol Chem. 2014;33:776–83.

    Article  CAS  Google Scholar 

  3. Martínez JL. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ Pollut. 2009;157:2893–902.

    Article  Google Scholar 

  4. Gadipelly C, Perez-Gonzalez A, Yadav GD, Ortiz I, Ibañez R, Rathod VK, et al. Pharmaceutical industry wastewater: review of the technologies for water treatment and reuse. Ind Eng Chem Res. 2014;53:11571–92.

    Article  CAS  Google Scholar 

  5. Zuccato E, Calamari D, Natangelo M, Fanelli R. Presence of therapeutic drugs in the environment. Lancet. 2000;355:1789–90.

    Article  CAS  Google Scholar 

  6. Rigos G, Smith P. A critical approach on pharmacokinetics, pharmacodynamics, dose optimisation and withdrawal times of oxytetracycline in aquaculture. Rev Aquacult. 2015;7:77–106.

    Article  Google Scholar 

  7. Li ZJ, Fan FF, Long J. Effects of soil temperature on degradation of oxytetracycline in soils. Res J Chem Environ. 2013;17:56–61.

    Google Scholar 

  8. Pouliquen H, Delépée R, Larhantec-Verdier M, Morvan ML, Le Bris H. Comparative hydrolysis and photolysis of four antibacterial agents (oxytetracycline oxolinic acid, flumequine and florfenicol) in deionised water, freshwater and seawater under abiotic conditions. Aquacult. 2007;26223–28.

  9. Li D, Yu T, Zhang Y, Yang M, Li Z, Liu M, et al. Antibiotic resistance characteristics of environmental bacteria from an oxytetracycline production wastewater treatment plant and the receiving river. Appl Environ Microbiol. 2010;76:3444–51.

    Article  CAS  Google Scholar 

  10. Tamayo FG, Turiel E, Martín-Esteban A. Molecularly imprinted polymers for solid-phase extraction and solid-phase microextraction: recent developments and future trends. J Chromatogr A. 2007;1152:32–40.

    Article  CAS  Google Scholar 

  11. Lorenzo RA, Carro AM, Concheiro A, Alvarez-Lorenzo C. Stimuli-responsive materials in analytical separations. Anal Bioanal Chem. 2015;407:4927–48.

    Article  CAS  Google Scholar 

  12. Caro E, Marce RM, Cormack PAG, Sherrington DC, Borrull F. Synthesis and application of an oxytetracycline imprinted polymer for the solid-phase extraction of tetracyclines antibiotics. Anal Chim Acta. 2005;552:81–6.

    Article  CAS  Google Scholar 

  13. Turiel E, Martín-Esteban A. Molecularly imprinted polymers for sample preparation: a review. Anal Chim Acta. 2010;668:87–99.

    Article  CAS  Google Scholar 

  14. Kong JH, Wang YZ, Nie C, Ran D, Jia XP. Preparation of magnetic mixed templates molecularly imprinted polymer for the separation of tetracycline antibiotics from egg and honey samples. Anal Methods. 2012;4:1005–11.

    Article  CAS  Google Scholar 

  15. Xiong Y, Zhou HJ, Zhang ZJ, He DY, He C. Molecularly imprinted on-line solid-phase extraction combined with flow-injection chemiluminiscence for the determination of tetracycline. Analyst. 2006;131:829–34.

    Article  CAS  Google Scholar 

  16. Sun XL, He XW, Zhang YK, Chen LX. Determination of tetracyclines in food samples by molecularly imprinted monolithic column coupling with high performance liquid chromatography. Talanta. 2009;79:926–34.

    Article  CAS  Google Scholar 

  17. Jing T, Gao XD, Wang P, Wang Y, Lin YF, Hu XZ, et al. Determination of trace tetracycline antibiotics in foodstuffs by liquid chromatography-tandem mass spectrometry coupled with selective molecular-imprinted solid-phase extraction. Anal Bioanal Chem. 2009;393:2009–18.

    Article  CAS  Google Scholar 

  18. Wang HT, Zhao HM, Quan X, Chen S. Electrochemical determination of tetracycline using molecularly imprinted polymer modified carbon nanotube-gold nanoparticles electrode. Electroanalysis. 2011;23:1863–9.

    Article  CAS  Google Scholar 

  19. Li JP, Li YP, Zhang Y, Wei G. Highly sensitive molecularly imprinted electrochemical sensor based on the double amplification by an inorganic Prussian blue catalytic polymer and the enzymatic effect of glucose oxidase. Anal Chem. 2012;84:1888–93.

    Article  CAS  Google Scholar 

  20. Jing T, Niu JW, Xia H, Dai Q, Zheng HY, Hao QL, et al. Online coupling of molecularly imprinted solid-phase extraction to HPLC for determination of trace tetracycline antibiotic residues in egg samples. J Sep Sci. 2011;34:1469–76.

    Article  CAS  Google Scholar 

  21. Hu XG, Pan JL, Hu YL, Huo Y, Li GK. Preparation and evaluation of solid-phase microextraction fiber based on molecularly imprinted polymers for trace analysis of tetracyclines in complicated samples. J Chromatogr A. 2008;1188:97–107.

    Article  CAS  Google Scholar 

  22. Lv YK, Wang LM, Yang L, Zhao CX, Sun HW. Synthesis and application of molecularly imprinted poly(methacryclic acid)-silica hybrid composite material for selective solid-phase extraction and high-performance liquid chromatography determination of oxytetracycline residues in milk. J Chromatogr A. 2012;1227:48–53.

    Article  CAS  Google Scholar 

  23. Moreira FTC, Kamel AH, Guerreiro JRL, Sales MGF. Man-tailored biomimetic sensor of molecularly imprinted materials for the potentiometric measurement of oxytetracycline. Biosens Bioelectron. 2010;26:566–74.

    Article  CAS  Google Scholar 

  24. Qu G, Zheng S, Liu Y, Xie W, Wu A, Zhang D. Metal ion mediated synthesis of molecularly imprinted polymers targeting tetracyclines in aqueous samples. J Chromatogr B. 2009;877:3187–93.

    Article  CAS  Google Scholar 

  25. Guerreiro JRL, Freitas V, Sales MGF. New sensing materials of molecularly-imprinted polymers for the selective recognition of chlortetracycline. Microchem J. 2011;97:173–81.

    Article  CAS  Google Scholar 

  26. Zhao CY, Dai JD, Zhou ZP, Dai XH, Zou YL, Yu P, et al. One-pot method for obtaining hydrophilic tetracycline-imprinted particles via precipitation polymerization in ethanol. J Appl Polym Sci. 2014;131:40071.

    Google Scholar 

  27. Lu ZY, Huo PW, Luo YY, Liu XL, Wu D, Gao X, et al. Performance of molecularly imprinted photocatalysts base on fly-ash cenospheres for selective photodegradation of single and ternary antibiotics solution. J Mol Catal A Chem. 2013;378:91–8.

    Article  CAS  Google Scholar 

  28. Chen LG, Liu J, Zeng QL, Wang H, Yu AM, Zhang HQ, et al. Preparation of magnetic molecularly imprinted polymer for the separation of tetracycline antibiotics from egg and tissue samples. J Chromatogr A. 2009;1216:3710–9.

    Article  CAS  Google Scholar 

  29. Jing T, Wang Y, Dai Q, Xia HA, Niu JW, Hao QL, et al. Preparation of mixed-templates molecularly imprinted polymers and investigation of the recognition ability for tetracycline antibiotics. Biosens Bioelectron. 2010;25:2218–24.

    Article  CAS  Google Scholar 

  30. Suedee R, Srichana T, Chuchome T, Kongmark U. Use of molecularly imprinted polymers from a mixture of tetracycline and its degradation products to produce affinity membranes for the removal of tetracycline from water. J Chromatogr B. 2004;811:191–200.

    Article  CAS  Google Scholar 

  31. Wang LQ, Lin FY, Yu LP. A molecularly imprinted photonic polymer sensor with high selectivity for tetracyclines analysis in food. Analyst. 2012;137:3502–9.

    Article  CAS  Google Scholar 

  32. Sánchez-Polo M, Velo-Gala I, López-Peñalver JJ, Rivera-Utrilla J. Molecular imprinted polymer to remove tetracycline from aqueous solutions. Micropor Mesopor Mater. 2015;203:32–40.

    Article  Google Scholar 

  33. Mu-Rong C, Chiung-Wen H, Jian-Lian C. Comparative synthesis of tetracycline-imprinted polymeric silicate and acrylate on CdTe quantum dots as fluorescent sensors. Biosens Bioelectron. 2014;61:471–7.

    Article  Google Scholar 

  34. Liu M, Li Y, Han J, Dong X. Synthesis of tetracycline-imprinted polymer microspheres by reversible addition-fragmentation chain-transfer precipitation polymerization using polyethylene glycol as a coporogen. J Separat Sci. 2014;37:1118–25.

    Article  CAS  Google Scholar 

  35. Breton F, Rouillon R, Piletska EV, Karim K, Guerreiro A, Chianella I, et al. Virtual imprinting as a tool to design efficient MIPs for photosynthesis-inhibiting herbicides. Biosens Bioelectron. 2006;22:1948–54.

    Article  Google Scholar 

  36. Sánchez-Barragán I, Karim K, Costa-Fernández JM, Piletsky SA, Sanz-Medel A. A molecularly imprinted polymer for carbaryl determination in water. Sens Actuators B. 2006;123:798–804.

    Article  Google Scholar 

  37. Tsyrulneva I, Zaporozhets O, Piletska E, Piletsky S. Molecular modelling and synthesis of a polymer for the extraction of amiloride and triamterene from human urine. Anal Methods. 2014;6:3429–35.

    Article  CAS  Google Scholar 

  38. Lorenzo RA, Carro AM, Alvarez-Lorenzo C, Concheiro A. To remove or not to remove? the challenge of extracting the template to make the cavities available in molecularly imprinted polymers (MIPs). Int J Mol Sci. 2011;12:4327–47.

    Article  CAS  Google Scholar 

  39. Richter BE, Jones BA, Ezzell JL, Porter NL, Avdalovic N, Phol C. Accelerated solvent extraction: a technique for sample preparation. Anal Chem. 1996;68:1033–9.

    Article  CAS  Google Scholar 

  40. Benito-Peña E, Martin S, Orellana G, Moreno-Bondi MC. Water-compatible molecularly imprinted polymer for the selective recognition of fluoroquinolone antibiotics in biological samples. Anal Bioanal Chem. 2009;393:235–45.

    Article  Google Scholar 

  41. Mojica ERE, Autschbach J, Bright FV, Aga DS. Tetracycline speciation during molecular imprinting in xerogel results in class-selective binding. Analyst. 2011;136:749–55.

    Article  CAS  Google Scholar 

  42. Yañez F, Chianella I, Piletsky SA, Concheiro A, Alvarez-Lorenzo C. Computational modeling and molecular imprinting for the development of acrylic polymers with high affinity for bile salts. Anal Chim Acta. 2010;659:178–85.

    Article  Google Scholar 

  43. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem. 1985;57:603–61.

    Article  CAS  Google Scholar 

  44. Umpleby RJ, Baxter SC, Rampey AM, Rushton GT, Chen Y, Shimizu KD. Characterization of the heterogeneous binding site affinity distributions in molecularly imprinted polymer. J Chromatogr B. 2004;804:141–9.

    Article  CAS  Google Scholar 

  45. Hassani M, Lazaro R, Perez C, Condon S, Pagan R. Thermostability of oxytetracycline, tetracycline, and doxycycline at ultrahigh temperatures. J Agric Food Chem. 2008;56:2676–80.

    Article  CAS  Google Scholar 

  46. Meier F, Elbert SM, Mizaikoff B. A novel approach for the direct determination of residual template molecules in molecularly imprinted polymer matrices. Anal Methods. 2012;4:2755–8.

    Article  CAS  Google Scholar 

  47. Spivak DA. Optimization, evaluation, and characterization of molecularly imprinted polymers. Adv Drug Del Rev. 2005;57:1779–94.

    Article  CAS  Google Scholar 

  48. Dai J, Zhou Z, Zhao C, Wei X, Dai X, Gao L, et al. Versatile method to obtain homogeneous imprinted polymer thin film at surface of superparamagnetic nanoparticles for tetracycline binding. Ind Eng Chem Res. 2014;53:7157–66.

    Article  CAS  Google Scholar 

  49. Alegakis AK, Tzatzarakis MN, Tsatsakis AM, Vlachonikolis IG, Liakou V. In vitro study of oxytetracycline adsorption on activated charcoal. J Environ Sci Health B. 2000;35:559–69.

    Article  CAS  Google Scholar 

  50. Cheng DH, Yang SK, Zhao Y, Chen J. Adsorption behaviors of oxytetracycline onto sediment in the Weihe River, Shaanxi. China J Chem. 2013;2013:652930.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministerio de Economía y Competitividad (SAF2014-52632-R and AGL2014-53647-R) and the Ministerio del Interior-DGT (SPIP2015-01838) of Spain, and the European Regional Development Fund (FEDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Alvarez-Lorenzo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 159 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Dorado, R., Carro, A.M., Chianella, I. et al. Oxytetracycline recovery from aqueous media using computationally designed molecularly imprinted polymers. Anal Bioanal Chem 408, 6845–6856 (2016). https://doi.org/10.1007/s00216-016-9811-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9811-6

Keywords

Navigation