Skip to main content
Log in

Analysis of diterpenic compounds by GC-MS/MS: contribution to the identification of main conifer resins

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The three principal types of molecules composing diterpenic resins are the abietanes, pimaranes and labdanes. The study of their fragmentation was performed by gas chromatography coupled to an ion trap mass spectrometer, on standards and resins used in paint varnishes: colophony and sandarac. We found that the general fragmentation pattern was mostly governed by the location of the double bonds on the different cycles and the presence of functional groups, and not by the nature of the C13 group in the case of abietanes and pimaranes. As for the labdanes, the loss of their alkyl chain is very specific. This study develops an analytical strategy using tandem mass spectrometry (MS/MS) experiments to validate the proposed mechanisms of fragmentation and to find the ions of interest for the identification of diterpenic molecules.

Analysis of diterpenic compounds by GC-MS/MS

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Langenheim JH. Plant resins: chemistry, evolution, ecology, and ethnobotany. Portland: Timber Press; 2003.

    Google Scholar 

  2. Howes FN. Age-Old resins of the Mediterranean region and their uses. Econ Bot. 1950;4:307–16. doi:10.1007/BF02985086.

    Article  CAS  Google Scholar 

  3. Lucero P (2012) Analyse chimique de matières résineuses employées dans le domaine artistique pré-Hispanique au Mexique. Application aux échantillons archéologiques d’époque Maya et Aztèque. Université d’Avignon et des Pays de Vaucluse.

  4. Pline l’Ancien (1848) Livre XXIV, Traitant des remèdes fournis par les arbres sauvages. Hist. Nat.

  5. Connan J, Nissenbaum A. Conifer tar on the keel and hull planking of the Ma’agan Mikhael Ship (Israel, 5th century BC): identification and comparison with natural products and artefacts employed in boat construction. J Archaeol Sci. 2003;30:709–19. doi:10.1016/S0305-4403(02)00243-1.

    Article  Google Scholar 

  6. Evershed RP, Jerman K, Eglinton G. Pine wood origin for pitch from the Mary Rose. Nature. 1985;314:528–30. doi:10.1038/314528a0.

    Article  CAS  Google Scholar 

  7. Outland RB (2004) Tapping the pines: the naval stores industry in the American South. Baton Rouge: LSU Press

  8. Pollard AM, Heron C (2007) The chemistry and use of resinous substances. Archaeol. Chem.

  9. Font J, Salvadó N, Butí S, Enrich J. Fourier transform infrared spectroscopy as a suitable technique in the study of the materials used in waterproofing of archaeological amphorae. Anal Chim Acta. 2007;598:119–27. doi:10.1016/j.aca.2007.07.021.

    Article  CAS  Google Scholar 

  10. Buckley SA, Evershed RP. Organic chemistry of embalming agents in Pharaonic and Graeco-Roman mummies. Nature. 2001;413:837–41. doi:10.1038/35101588.

    Article  CAS  Google Scholar 

  11. Buckley SA, Clark KA, Evershed RP. Complex organic chemical balms of Pharaonic animal mummies. Nature. 2004;431:294–9. doi:10.1038/nature02849.

    Article  CAS  Google Scholar 

  12. Ménager M, Azémard C, Vieillescazes C. Study of Egyptian mummification balms by FT-IR spectroscopy and GC–MS. Microchem J. 2014;114:32–41. doi:10.1016/j.microc.2013.11.018.

    Article  Google Scholar 

  13. Baumer U, Dietemann P, Koller J. Identification of resinous materials on 16th and 17th century reverse-glass objects by gas chromatography/mass spectrometry. Int J Mass Spectrom. 2009;284:131–41. doi:10.1016/j.ijms.2008.09.010.

    Article  CAS  Google Scholar 

  14. Colombini PMP, Modugno F (2009) Organic mass spectrometry in art and archaeology. New York: Wiley

  15. Colombini MP, Modugno F, Giannarelli S, Fuoco R. GC-MS characterization of paint varnishes. Microchem J. 2000;67:385–96.

    Article  CAS  Google Scholar 

  16. Doménech-Carbó MT, Osete-Cortina L, de la Cruz Cañizares J, Bolívar-Galiano F, Romero-Noguera J, Fernández-Vivas MA, et al. Study of the microbiodegradation of terpenoid resin-based varnishes from easel painting using pyrolysis–gas chromatography–mass spectrometry and gas chromatography–mass spectrometry. Anal Bioanal Chem. 2006;385:1265–80. doi:10.1007/s00216-006-0582-3.

    Article  Google Scholar 

  17. Mills JS, White R. Organic chemistry of museum objects. 2nd ed. Butterworth-Heinemann: Oxford; 1994.

    Google Scholar 

  18. Nevin A, Echard J-P, Thoury M, Comelli D, Valentini G, Cubeddu R. Excitation emission and time-resolved fluorescence spectroscopy of selected varnishes used in historical musical instruments. Talanta. 2009;80:286–93. doi:10.1016/j.talanta.2009.06.063.

    Article  CAS  Google Scholar 

  19. Sarmiento A, Pérez-Alonso M, Olivares M, Castro K, Martínez-Arkarazo I, Fernández LA, et al. Classification and identification of organic binding media in artworks by means of Fourier transform infrared spectroscopy and principal component analysis. Anal Bioanal Chem. 2011;399:3601–11. doi:10.1007/s00216-011-4677-0.

    Article  CAS  Google Scholar 

  20. Vieillescazes C, Archier P, Pistre MS. Study of post-Byzantine icon varnishes by chromatographic and spectroscopic methods. Stud Conserv. 2005;50:37–44.

    Article  CAS  Google Scholar 

  21. Clifford DJ, Hatcher PG, Botto RE, Muntean JV, Michels B, Anderson KB. The nature and fate of natural resins in the geosphere—VIII.1 NMR and Py–GC–MS characterization of soluble labdanoid polymers, isolated from Holocene class I resins. Org Geochem. 1997;27:449–64. doi:10.1016/S0146-6380(97)00043-0.

    Article  CAS  Google Scholar 

  22. Simoneit BRT, Mazurek MA (1979) Search for eolian lipids in the Pleistocene off Cape Bojador and lipid geochemistry of a Cretaceous mudstone. In: Initial Rep. Deep Sea Drill. Proj. 47 Pt 1. U.S. Government Printing Office, pp 541–545.

  23. Corin NS, Backlund PH, Kulovaara MAM. Photolysis of the resin acid dehydroabietic acid in water. Environ Sci Technol. 2000;34:2231–6. doi:10.1021/es9910816.

    Article  CAS  Google Scholar 

  24. Peng G, Roberts JC. Solubility and toxicity of resin acids. Water Res. 2000;34:2779–85. doi:10.1016/S0043-1354(99)00406-6.

    Article  CAS  Google Scholar 

  25. Savluchinske Feio S, Gigante B, Carlos Roseiro J, Marcelo-Curto MJ. Antimicrobial activity of diterpene resin acid derivatives. J Microbiol Methods. 1999;35:201–6. doi:10.1016/S0167-7012(98)00117-1.

    Article  CAS  Google Scholar 

  26. Termentzi A, Fokialakis N, Leandros Skaltsounis A. Natural resins and bioactive natural products thereof as potential anitimicrobial agents. Curr Pharm Des. 2011;17:1267–90. doi:10.2174/138161211795703807.

    Article  CAS  Google Scholar 

  27. Wang J, Chen YP, Yao K, Wilbon PA, Zhang W, Ren L, et al. Robust antimicrobial compounds and polymers derived from natural resin acids. Chem Commun. 2011;48:916–8. doi:10.1039/C1CC16432E.

    Article  Google Scholar 

  28. Scalarone. Ageing behaviour and pyrolytic characterisation of diterpenic resins used as art materials: colophony and Venice turpentine. J Anal Appl Pyrolysis. 2002;64:345–61. doi:10.1016/S0165-2370(02)00046-3.

    Article  CAS  Google Scholar 

  29. Scalarone D, Duursma MC, Boon JJ, Chiantore O. MALDI‐TOF mass spectrometry on cellulosic surfaces of fresh and photo‐aged di‐ and triterpenoid varnish resins. J Mass Spectrom. 2005;40:1527–35. doi:10.1002/jms.893.

    Article  CAS  Google Scholar 

  30. Scalarone D, Lazzari M, Chiantore O. Ageing behaviour and analytical pyrolysis characterisation of diterpenic resins used as art materials: Manila copal and sandarac. J Anal Appl Pyrolysis. 2003;68–69:115–36. doi:10.1016/S0165-2370(03)00005-6.

    Article  Google Scholar 

  31. Andreotti A, Bonaduce I, Colombini MP, Modugno F, Ribechini E, Gautier G. Combined GC/MS analytical procedure for the characterization of glycerolipid, waxy, resinous, and proteinaceous materials in a unique paint microsample. Anal Chem. 2006;78:4490–500.

    Article  CAS  Google Scholar 

  32. Sugimoto N, Kuroyanagi M, Kato T, Sato K, Tada A, Yamazaki T, et al. Identification of the main constituents in sandarac resin, a natural gum base. Shokuhin Eiseigaku Zasshi J Food Hyg Soc Jpn. 2006;47:76–9.

    Article  CAS  Google Scholar 

  33. Perego F (2005) Dictionnaire des matériaux du peintre. Belin.

  34. Thoury M (2006) Identification non-destructive des vernis des oeuvres d’art par fluorescence UV. Université Pierre et Marie Curie - Paris VI.

  35. van den Berg JDJ. Analytical chemical studies on traditional linseed oil paints. Amsterdam: MOLART; 2002.

    Google Scholar 

  36. van den Berg KJ, Boon JJ, Pastorova I, Spetter LFM. Mass spectrometric methodology for the analysis of highly oxidized diterpenoid acids in Old Master paintings. J Mass Spectrom. 2000;35:512–33. doi:10.1002/(SICI)1096-9888(200004)35:4<512::AID-JMS963>3.0.CO;2-3.

    Article  Google Scholar 

  37. Osete-Cortina L, Doménech-Carbó MT. Analytical characterization of diterpenoid resins present in pictorial varnishes using pyrolysis–gas chromatography–mass spectrometry with on line trimethylsilylation. J Chromatogr A. 2005;1065:265–78. doi:10.1016/j.chroma.2004.12.078.

    Article  CAS  Google Scholar 

  38. Lattuati-Derieux A, Gomes S, Tirat S, Thao-Heu S, Echard J-P. New insights into molecular evolution of oil/colophony varnishes: towards pyrolysis-gas chromatography/mass spectrometry-based quantitation. E-Preserv Sci. 2014;11:54–63.

    Google Scholar 

  39. Budzikiewick H, Wilson JM, Djerassi C. Mass spectrometry in structural and stereochemical problems. XXXII. 1 Pentacyclic triterpenes. J Am Chem Soc. 1963;85:3688–99.

    Article  Google Scholar 

  40. Burnouf-Radosevich M, Delfel NE, England R. Gas chromatography-mass spectrometry of oleanane-and ursane-type triterpenes—application to Chenopodium quinoa triterpenes. Phytochemistry. 1985;24:2063–6.

    Article  CAS  Google Scholar 

  41. Regert M, Devièse T, LE HÔ AS, Rougeulle A. Reconstructing ancient Yemeni commercial routes during the Middle Ages using structural characterization of terpenoid resins. Archaeometry. 2008;50:668–95.

    Article  CAS  Google Scholar 

  42. De la Cruz-Cañizares J, Doménech-Carbó M-T, Gimeno-Adelantado J-V, Mateo-Castro R, Bosch-Reig F. Study of Burseraceae resins used in binding media and varnishes from artworks by gas chromatography-mass spectrometry and pyrolysis-gas chromatography-mass spectrometry. J Chromatogr A. 2005;1093:177–94. doi:10.1016/j.chroma.2005.07.058.

    Article  Google Scholar 

  43. Scalarone D, van der Horst J, Boon JJ, Chiantore O. Direct-temperature mass spectrometric detection of volatile terpenoids and natural terpenoid polymersin fresh and artificially aged resins. J Mass Spectrom. 2003;38:607–17. doi:10.1002/jms.470.

    Article  CAS  Google Scholar 

  44. Theodorakopoulos C, Boon JJ, Zafiropulos V. Direct temperature mass spectrometric study on the depth-dependent compositional gradients of aged triterpenoid varnishes. Int J Mass Spectrom. 2009;284:98–107. doi:10.1016/j.ijms.2008.11.004.

    Article  CAS  Google Scholar 

  45. Dietemann P, Edelmann MJ, Meisterhans C, Pfeiffer C, Zumbühl S, Knochenmuss R, et al. Artificial photoaging of triterpenes studied by graphite-assisted laser desorption/ionization mass spectrometry. Helv Chim Acta. 2000;83:1766–77. doi:10.1002/1522-2675(20000809)83:8<1766::AID-HLCA1766>3.0.CO;2-X.

    Article  CAS  Google Scholar 

  46. Zumbühl S, Knochenmuss R, Wülfert S, Dubois F, Dale MJ, Zenobi R. A graphite-assisted laser desorption/ionization study of light-induced aging in triterpene dammar and mastic varnishes. Anal Chem. 1998;70:707–15. doi:10.1021/ac970574v.

    Article  Google Scholar 

  47. Vahur S, Teearu A, Haljasorg T, Burk P, Leito I, Kaljurand I. Analysis of dammar resin with MALDI-FT-ICR-MS and APCI-FT-ICR-MS. J Mass Spectrom. 2012;47:392–409. doi:10.1002/jms.2971.

    Article  CAS  Google Scholar 

  48. Doménech-Carbó MT, de la Cruz-Cañizares J, Osete-Cortina L, Doménech-Carbó A, David H. Ageing behaviour and analytical characterization of the Jatobá resin collected from Hymenaea stigonocarpa Mart. Int J Mass Spectrom. 2009;284:81–92. doi:10.1016/j.ijms.2008.12.015.

    Article  Google Scholar 

  49. Enzell CR, Appleton RA, Wahlberg I. Chapter 13 Terpenes and terpenoids. In: Waller GR, editor. Biochem. Applications Mass Spectrom. New-York: Wiley-Interscience; 1972. p. 351–85.

    Google Scholar 

  50. Mathe C (2003) Etude de résines naturelles; caractérisation par CLHP et GCP couplées à divers modes de détection: UV/visible, fluorimétrique et spectrométrie de masse. Université d’Avignon et des Pays de Vaucluse.

  51. Chang T-L, Mead TE, Zinkel DF. Mass spectra of diterpene resin acid methyl esters. J Am Oil Chem Soc. 1971;48:455–61. doi:10.1007/BF02544660.

    Article  CAS  Google Scholar 

  52. Romero-Noguera J, Bolívar-Galiano FC, Ramos-López JM, Fernández-Vivas MA, Martín-Sánchez I. Study of biodeterioration of diterpenic varnishes used in art painting: Colophony and Venetian turpentine. Int Biodeterior Biodegrad. 2008;62:427–33. doi:10.1016/j.ibiod.2008.03.014.

    Article  CAS  Google Scholar 

  53. Franich RA, Holland PT. Mass spectra of benzylic hydroxydehydro-abietic acid methyl esters and their corresponding trimethylsilyl ethers. Org Mass Spectrom. 1985;20:695–8. doi:10.1002/oms.1210201111.

    Article  CAS  Google Scholar 

  54. Schummer C, Delhomme O, Appenzeller BMR, Wennig R, Millet M. Comparison of MTBSTFA and BSTFA in derivatization reactions of polar compounds prior to GC/MS analysis. Talanta. 2009;77:1473–82. doi:10.1016/j.talanta.2008.09.043.

    Article  CAS  Google Scholar 

  55. Smith GG, Djerassi C. Mass spectrometry in structural and stereochemical problems—CCV: the mass spectra of trimethylsilyl ethers of phenols and the importance of neighboring group participation in fragmentation. Org Mass Spectrom. 1971;5:487–9. doi:10.1002/oms.1210050416.

    Article  CAS  Google Scholar 

  56. Rontani JF, Aubert C. Trimethylsilyl transfer during electron ionization mass spectral fragmentation of some w-hydroxycarboxylic and w-dicarboxylic acid trimethylsilyl derivatives and the effect of chain length. Rapid Commun Mass Spectrom. 2004;18:1889–95. doi:10.1002/rcm.2005.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Menager.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Clara Azemard and Matthieu Menager contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 546 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azemard, C., Menager, M. & Vieillescazes, C. Analysis of diterpenic compounds by GC-MS/MS: contribution to the identification of main conifer resins. Anal Bioanal Chem 408, 6599–6612 (2016). https://doi.org/10.1007/s00216-016-9772-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9772-9

Keywords

Navigation