Skip to main content
Log in

Improved procedure for dendrimer-based mass calibration in matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A procedure is described that results in a substantial increase in signal intensity and in improved accuracy of positive-ion mass calibration when using commercially available kits of monodisperse dendrimers (SpheriCal®) in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS). The peak intensities are amplified by an admixture of 2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene] malononitrile (DCTB) matrix to the kits comprising of 9-nitroanthracene matrix, sodium trifluoroacetate, and four dendrimers. Boosted ion formation then permits lower laser fluence to be used and thus yields enhanced mass resolution. Further, the number of reference peaks is doubled by doping the sample preparation with cesium ions. This results in four [M+Cs]+ ion signals in addition to four [M+Na]+ ion signals provided by the standard kit. Overall, the modified procedure notably reduces the consumption of the expensive calibration standard kits, while it increases mass resolution and enables the use of an advanced calibration algorithm requiring at least six reference peaks.

A dendrimer-based mass calibration for MALDI-TOF-MS can be improved by adding a DCTB matrix and doping the sample preparation with Cs+ ions. Having eight rather than just four reference peaks reduces the average mass error of the calibration curve about fivefold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hillenkamp F, Peter-Katalinic J, editors. MALDI MS: a practical guide to instrumentation, methods and applications. Weinheim: Wiley-VCH; 2013.

    Google Scholar 

  2. Dreisewerd K. Recent methodological advances in MALDI mass spectrometry. Anal Bioanal Chem. 2014;406(9–10):2261–78. doi:10.1007/s00216-014-7646-6.

    Article  CAS  Google Scholar 

  3. Zhang G, Presly O, White F, Oppel IM, Mastalerz M. A shape-persistent quadruply interlocked giant cage catenane with two distinct pores in the solid state. Angew Chem Int Ed. 2014;53(20):5126–30. doi:10.1002/anie.201400285.

    CAS  Google Scholar 

  4. Zhang G, Mastalerz M. Organic cage compounds—from shape-persistency to function. Chem Soc Rev. 2014;43(6):1934–47. doi:10.1039/c3cs60358j.

    Article  CAS  Google Scholar 

  5. Karas M, Gluckmann M, Schäfer J. Ionization in matrix-assisted laser desorption/ionization: singly charged molecular ions are the lucky survivors. J Mass Spectrom. 2000;35(1):1–12. doi:10.1002/(SICI)1096-9888(200001)35:1<1::AID-JMS904>3.0.CO;2-0.

    Article  CAS  Google Scholar 

  6. Gruendling T, Sauerland V, Barahona C, Herz C, Nitsch U. Polyalanine—a practical polypeptide mass calibration standard for matrix-assisted laser desorption/ionization mass spectrometry and tandem mass spectrometry in positive and negative mode. Rapid Commun Mass Spectrom. 2016;30(6):681–3. doi:10.1002/rcm.7492.

    Article  CAS  Google Scholar 

  7. Lou X, van Dongen JLJ, Meijer EW. Generation of CsI cluster ions for mass calibration in matrix-assisted laser desorption/ionization mass spectrometry. J Am Soc Mass Spectrom. 2010;21(7):1223–6. doi:10.1016/j.jasms.2010.02.029.

    Article  CAS  Google Scholar 

  8. Mochizuki S. Enhanced measurement of CsI cluster ions for mass calibration in MALDI-MS using sugar alcohols. Anal Methods. 2015;7(5):2215–8. doi:10.1039/c4ay02509a.

    Article  CAS  Google Scholar 

  9. Grayson SM, Myers BK, Bengtsson J, Malkoch M. Advantages of monodisperse and chemically robust “spherical” polyester dendrimers as a “universal” MS calibrant. J Am Soc Mass Spectrom. 2014;25(3):303–9. doi:10.1007/s13361-013-0777-8.

    Article  CAS  Google Scholar 

  10. Casey BK, Grayson SM. Letter: the potential of amine-containing dendrimer mass standards for internal calibration of peptides. Eur J Mass Spectrom. 2015;21(5):747–52. doi:10.1255/ejms.1394.

    Article  CAS  Google Scholar 

  11. Montaudo G, Montaudo MS, Puglisi C, Samperi F. Self-calibrating property of matrix-assisted laser desorption/ionization time-of-flight spectra of polymeric materials. Rapid Commun Mass Spectrom. 1994;8(12):981–4. doi:10.1002/rcm.1290081215.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen H. Gross.

Ethics declarations

No humans or animals were involved in this study.

Conflict of interest

The author declares that he has no conflict of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 946 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gross, J.H. Improved procedure for dendrimer-based mass calibration in matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry. Anal Bioanal Chem 408, 5945–5951 (2016). https://doi.org/10.1007/s00216-016-9714-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9714-6

Keywords

Navigation