Skip to main content
Log in

A fluorescent aptasensor based on a DNA pyramid nanostructure for ultrasensitive detection of ochratoxin A

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Analytical techniques for detection of ochratoxin A (OTA) in food products and blood serum are of great significance. In this study, a fluorescent aptasensor was developed for sensitive and specific detection of OTA, based on a DNA pyramid nanostructure (DPN) and PicoGreen (PG) dye. The designed aptasensor inherits characteristics of DPN, such as high stability and capacity for PG loading. PG, as a fluorescent dye, could bind to double-stranded DNA (dsDNA). In the absence of OTA, the pyramid structure of DPN remains intact, leading to a very strong fluorescence emission. Because of higher affinity of aptamer for its target relative to its complementary strand, upon addition of target, the pyramid structure of DPN is disassembled, leading to a weak fluorescence emission. The presented aptasensor showed high specificity toward OTA with a limit of detection (LOD) as low as 0.135 nM. Besides, the designed sensing strategy was successfully utilized to recognize OTA in serum and grape juice with LODs of 0.184 and 0.149 nM, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang C, Qian J, Wang K, Liu Q, Dong X, Huang X. Magnetic-fluorescent-targeting multifunctional aptasensorfor highly sensitive and one-step rapid detection of ochratoxin A. Biosens Bioelectron. 2015;68:783–90. doi:10.1016/j.bios.2015.02.008.

    Article  CAS  Google Scholar 

  2. Wei Y, Zhang J, Wang X, Duan Y. Amplified fluorescent aptasensor through catalytic recycling for highly sensitive detection of ochratoxin A. Biosens Bioelectron. 2015;65:16–22. doi:10.1016/j.bios.2014.09.100.

    Article  CAS  Google Scholar 

  3. Sanzani SM, Reverberi M, Fanelli C, Ippolito A. Detection of ochratoxin a using molecular beacons and real-time PCR thermal cycler. Toxins. 2015;7(3):812–20. doi:10.3390/toxins7030812.

    Article  CAS  Google Scholar 

  4. Yang M, Jiang B, Xie J, Xiang Y, Yuan R, Chai Y. Electrochemiluminescence recovery-based aptasensor for sensitive ochratoxin A detection via exonuclease-catalyzed target recycling amplification. Talanta. 2014;125:45–50. doi:10.1016/j.talanta.2014.02.061.

    Article  CAS  Google Scholar 

  5. Zhu Z, Feng M, Zuo L, Wang F, Chen L, Li J, et al. An aptamer based surface plasmon resonance biosensor for the detection of ochratoxin A in wine and peanut oil. Biosens Bioelectron. 2015;65:320–6. doi:10.1016/j.bios.2014.10.059.

    Article  CAS  Google Scholar 

  6. Chen J, Zhang X, Cai S, Wu D, Chen M, Wang S, et al. A fluorescent aptasensor based on DNA-scaffolded silver-nanocluster for ochratoxin A detection. Biosens Bioelectron. 2014;57:226–31. doi:10.1016/j.bios.2014.02.001.

    Article  CAS  Google Scholar 

  7. Lv L, Cui C, Liang C, Quan W, Wang S, Guo Z. Aptamer-based single-walled carbon nanohorn sensors for ochratoxin A detection. Food Control. 2016;60:296–301. doi:10.1016/j.foodcont.2015.08.002.

    Article  CAS  Google Scholar 

  8. Wang C, Dong X, Liu Q, Wang K. Label-free colorimetric aptasensor for sensitive detection of ochratoxin A utilizing hybridization chain reaction. Anal Chim Acta. 2015;860:83–8. doi:10.1016/j.aca.2014.12.031.

    Article  CAS  Google Scholar 

  9. Du F, Guo L, Qin Q, Zheng X, Ruan G, Li J, et al. Recent advances in aptamer-functionalized materials in sample preparation. TrAC Trends Anal Chem. 2015;67:134–46. doi:10.1016/j.trac.2015.01.007.

    Article  CAS  Google Scholar 

  10. Xiang D, Shigdar S, Qiao G, Wang T, Kouzani AZ, Zhou SF, et al. Nucleic acid aptamer-guided cancer therapeutics and diagnostics: the next generation of cancer medicine. Theranostics. 2015;5(1):23–42. doi:10.7150/thno.10202.

    Article  Google Scholar 

  11. Dong Y, Xu Y, Yong W, Chu X, Wang D. Aptamer and its potential applications for food safety. Crit Rev Food Sci Nutr. 2014;54(12):1548–61. doi:10.1080/10408398.2011.642905.

    Article  CAS  Google Scholar 

  12. Zhou W, Jimmy Huang PJ, Ding J, Liu J. Aptamer-based biosensors for biomedical diagnostics. Analyst. 2014;139(11):2627–40. doi:10.1039/c4an00132j.

    Article  CAS  Google Scholar 

  13. Eissa S, Siaj M, Zourob M. Aptamer-based competitive electrochemical biosensor for brevetoxin-2. Biosens Bioelectron. 2015;69:148–54. doi:10.1016/j.bios.2015.01.055.

    Article  CAS  Google Scholar 

  14. Lian Y, He F, Wang H, Tong F. A new aptamer/graphene interdigitated gold electrode piezoelectric sensor for rapid and specific detection of Staphylococcus aureus. Biosens Bioelectron. 2015;65:314–9.

    Article  CAS  Google Scholar 

  15. Zhao B, Wu P, Zhang H, Cai C. Designing activatable aptamer probes for simultaneous detection of multiple tumor-related proteins in living cancer cells. Biosens Bioelectron. 2015;68:763–70. doi:10.1016/j.bios.2015.02.004.

    Article  CAS  Google Scholar 

  16. Abnous K, Danesh NM, Ramezani M, Emrani AS, Taghdisi SM. A novel colorimetric sandwich aptasensor based on an indirect competitive enzyme-free method for ultrasensitive detection of chloramphenicol. Biosens Bioelectron. 2016;78:80–6. doi:10.1016/j.bios.2015.11.028.

    Article  CAS  Google Scholar 

  17. Mohammad Danesh N, Ramezani M, Sarreshtehdar Emrani A, Abnous K, Taghdisi SM. A novel electrochemical aptasensor based on arch-shape structure of aptamer-complimentary strand conjugate and exonuclease I for sensitive detection of streptomycin. Biosens Bioelectron. 2016;75:123–8. doi:10.1016/j.bios.2015.08.017.

    Article  CAS  Google Scholar 

  18. Ramezani M, Mohammad Danesh N, Lavaee P, Abnous K, Mohammad TS. A novel colorimetric triple-helix molecular switch aptasensor for ultrasensitive detection of tetracycline. Biosens Bioelectron. 2015;70:181–7. doi:10.1016/j.bios.2015.03.040.

    Article  CAS  Google Scholar 

  19. Ramezani M, Danesh NM, Lavaee P, Abnous K, Taghdisi SM. A selective and sensitive fluorescent aptasensor for detection of kanamycin based on catalytic recycling activity of exonuclease III and gold nanoparticles. Sens Actuators B Chem. 2016;222:1–7. doi:10.1016/j.snb.2015.08.024.

    Article  CAS  Google Scholar 

  20. Pang Y, Rong Z, Wang J, Xiao R, Wang S. A fluorescent aptasensor for H5N1 influenza virus detection based-on the core-shell nanoparticles metal-enhanced fluorescence (MEF). Biosens Bioelectron. 2015;66:527–32. doi:10.1016/j.bios.2014.10.052.

    Article  CAS  Google Scholar 

  21. Mishra RK, Hayat A, Catanante G, Istamboulie G, Marty JL. Sensitive quantitation of ochratoxin A in cocoa beans using differential pulse voltammetry based aptasensor. Food Chem. 2016;192:799–804. doi:10.1016/j.foodchem.2015.07.080.

    Article  CAS  Google Scholar 

  22. Wang R, Xiang Y, Zhou X, Liu LH, Shi H. A reusable aptamer-based evanescent wave all-fiber biosensor for highly sensitive detection of ochratoxin A. Biosens Bioelectron. 2015;66:11–8. doi:10.1016/j.bios.2014.10.079.

    Article  CAS  Google Scholar 

  23. Song Q, Peng M, Wang L, He D, Ouyang J. A fluorescent aptasensor for amplified label-free detection of adenosine triphosphate based on core–shell Ag@SiO2 nanoparticles. Biosens Bioelectron. 2016;77:237–41. doi:10.1016/j.bios.2015.09.008.

    Article  CAS  Google Scholar 

  24. Chen Z, Tan L, Hu L, Luan Y. Superior fluorescent probe for detection of potassium ion. Talanta. 2015;144:247–51. doi:10.1016/j.talanta.2015.06.015.

    Article  CAS  Google Scholar 

  25. Wu S, Zhang H, Shi Z, Duan N, Fang C, Dai S, et al. Aptamer-based fluorescence biosensor for chloramphenicol determination using upconversion nanoparticles. Food Control. 2015;50:597–604.

    Article  CAS  Google Scholar 

  26. Yang C, Wang Q, Xiang Y, Yuan R, Chai Y. Target-induced strand release and thionine-decorated gold nanoparticle amplification labels for sensitive electrochemical aptamer-based sensing of small molecules. Sens Actuators B Chem. 2014;197:149–54.

    Article  CAS  Google Scholar 

  27. Liu XP, Deng YJ, Jin XY, Chen LG, Jiang JH, Shen GL, et al. Ultrasensitive electrochemical immunosensor for ochratoxin A using gold colloid-mediated hapten immobilization. Anal Biochem. 2009;389(1):63–8. doi:10.1016/j.ab.2009.03.019.

    Article  CAS  Google Scholar 

  28. Yu FY, Chi TF, Liu BH, Su CC. Development of a sensitive enzyme-linked immunosorbent assay for the determination of ochratoxin A. J Agric Food Chem. 2005;53(17):6947–53. doi:10.1021/jf0513922.

    Article  CAS  Google Scholar 

  29. Majdinasab M, Sheikh-Zeinoddin M, Soleimanian-Zad S, Li P, Zhang Q, Li X, et al. A reliable and sensitive time-resolved fluorescent immunochromatographic assay (TRFICA) for ochratoxin A in agro-products. Food Control. 2015;47:126–34. doi:10.1016/j.foodcont.2014.06.044.

    Article  CAS  Google Scholar 

  30. Taghdisi SM, Danesh NM, Beheshti HR, Ramezani M, Abnous K. A novel fluorescent aptasensor based on gold and silica nanoparticles for the ultrasensitive detection of ochratoxin A. Nanoscale. 2016;8(6):3439–46. doi:10.1039/c5nr08234j.

    Article  CAS  Google Scholar 

  31. Yang X, Qian J, Jiang L, Yan Y, Wang K, Liu Q, et al. Ultrasensitive electrochemical aptasensor for ochratoxin A based on two-level cascaded signal amplification strategy. Bioelectrochemistry. 2014;96:7–13.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support of this study was provided by Mashhad University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Khalil Abnous or Seyed Mohammad Taghdisi.

Ethics declarations

Conflict of interest

There is no conflict of interest about this article.

Additional information

Morteza Alinezhad Nameghi and Noor Mohammad Danesh contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nameghi, M.A., Danesh, N.M., Ramezani, M. et al. A fluorescent aptasensor based on a DNA pyramid nanostructure for ultrasensitive detection of ochratoxin A. Anal Bioanal Chem 408, 5811–5818 (2016). https://doi.org/10.1007/s00216-016-9693-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9693-7

Keywords

Navigation