Skip to main content
Log in

Ion sensors based on novel fiber organic electrochemical transistors for lead ion detection

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Fiber organic electrochemical transistors (FECTs) based on polypyrrole and nanofibers have been prepared for the first time. FECTs exhibited excellent electrical performances, on/off ratios up to 104 and low applied voltages below 2 V. The ion sensitivity behavior of the fiber organic electrochemical transistors was investigated. It exhibited that the transfer curve of FECTs shifted to lower gate voltage with increasing cations concentration, the sensitivity reached to 446 μA/dec in the 10–5–10–2 M Pb2+ concentration range. The ion selective properties of the FECTs have also been systematically studied for the detection of potassium, calcium, aluminum, and lead ions. The devices with different cations showed great difference in response curves. It was suitable for selectively monitoring Pb2+ with respect to other cations. The results indicated FECTs were very effective for electrochemical sensing of lead ion, which opened a promising perspective for wearable electronics in healthcare and biological application.

The schematic diagram of fiber organic electrochemical transistors based on polypyrrole and nanofibers for ion sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bahrami A, Besharati-Seidani A, Abbaspour A, Shamsipur M. A highly selective voltammetric sensor for sub-nanomolar detection of lead ions using a carbon paste electrode impregnated with novel ion imprinted polymeric nanobeads. Electrochim Acta. 2014;118:92–9.

    Article  CAS  Google Scholar 

  2. Safavi A, Sorouri M, Khanipour P. Hydroxyapatite wrapped multi-walled carbon nanotubes/ionic liquid composite electrode: a high performance sensor for trace determination of lead ions. Electroanalysis. 2014;26:359–65.

    Article  CAS  Google Scholar 

  3. Aksuner N. Development of a new fluorescent sensor based on a triazolo-thiadiazin derivative immobilized in polyvinyl chloride membrane for sensitive detection of lead (II) ions. Sensors Actuators B. 2011;157:162–8.

    Article  CAS  Google Scholar 

  4. Chakraborty I, Udayabhaskararao T, Pradeep T. Luminescent sub-nanometer clusters for metal ion sensing: a new direction in nanosensors. J Hazard Mater. 2012;211:396–403.

    Article  Google Scholar 

  5. Markovac J, Goldstein GW. Picomolar concentrations of lead stimulate brain protein kinase C. Nature. 1988;334:71–3.

    Article  CAS  Google Scholar 

  6. Heng LY, Hall EA. Assessing a photocured self-plasticized acrylic membrane recipe for Na+ and K+ ion selective electrodes. Anal Chim Acta. 2001;443:25–40.

    Article  CAS  Google Scholar 

  7. De Marco R, Clarke G, Pejcic B. Ion‐selective electrode potentiometry in environmental analysis. Electroanalysis. 2007;19:1987–2001.

    Article  Google Scholar 

  8. Bobacka J, Ivaska A, Lewenstam A. Potentiometric ion sensors. Chem Rev. 2008;108:329–51.

    Article  CAS  Google Scholar 

  9. Bojdi MK, Mashhadizadeh MH, Behbahani M, Farahani A, Davarani SSH, Bagheri A. Synthesis, characterization, and application of novel lead imprinted polymer nanoparticles as a high selective electrochemical sensor for ultra-trace determination of lead ions in complex matrixes. Electrochim Acta. 2014;136:59–65.

    Article  CAS  Google Scholar 

  10. Mabeck JT, Malliaras GG. Chemical and biological sensors based on organic thin-film transistors. Anal Bioanal Chem. 2006;384:343–53.

    Article  CAS  Google Scholar 

  11. Facchetti A, Yoon MH, Marks TJ. Gate dielectrics for organic field-effect transistors: new opportunities for organic electronics. Adv Mater. 2005;17:1705–25.

    Article  CAS  Google Scholar 

  12. Sokolov AN, Roberts ME, Bao Z. Fabrication of low-cost electronic biosensors. Mater Today. 2009;12:12–20.

    Article  Google Scholar 

  13. Strakosas X, Bongo M, Owens RM. The organic electrochemical transistor for biological applications. J Appl Polymer Sci. 2015; 132:41735.

  14. Liao C, Yan F. Organic semiconductors in organic thin-film transistor-based chemical and biological sensors. Pol Rev. 2013;53:352–406.

    Article  CAS  Google Scholar 

  15. Liao C, Zhang M, Niu L, Zheng Z, Yan F. Highly selective and sensitive glucose sensors based on organic electrochemical transistors with graphene-modified gate electrodes. J Mater Chem B. 2013;1:3820–9.

    Article  CAS  Google Scholar 

  16. Tang H, Yan F, Lin P, Xu J, Chan HL. Highly sensitive glucose biosensors based on organic electrochemical transistors using platinum gate electrodes modified with enzyme and nanomaterials. Adv Funct Mater. 2011;21:2264–72.

    Article  Google Scholar 

  17. Tang H, Lin P, Chan HL, Yan F. Highly sensitive dopamine biosensors based on organic electrochemical transistors. Biosens Bioelectron. 2011;26:4559–63.

    Article  CAS  Google Scholar 

  18. Bernards DA, Malliaras GG. Steady-state and transient behavior of organic electrochemical transistors. Adv Funct Mater. 2007;17:3538–44.

    Article  CAS  Google Scholar 

  19. Paul EW, Ricco AJ, Wrighton MS. Resistance of polyaniline films as a function of electrochemical potential and the fabrication of polyaniline-based microelectronic devices. J Phys Chem. 1985;89:1441–7.

    Article  CAS  Google Scholar 

  20. Thackeray JW, Wrighton MS. Chemically responsive microelectrochemical devices based on platinized poly (3-methylthiophene): variation in conductivity with variation in hydrogen, oxygen, or pH in aqueous solution. J Phys Chem. 1986;90:6674–9.

    Article  CAS  Google Scholar 

  21. Nilsson D, Chen M, Kugler T, Remonen T, Armgarth M, Berggren M. Bi-stable and dynamic current modulation in electrochemical organic transistors. Adv Mater. 2002;14:51–4.

    Article  CAS  Google Scholar 

  22. Inal S, Rivnay J, Hofmann AI, Uguz I, Mumtaz M, Katsigiannopoulos D, Brochon C, Cloutet E, Hadziioannou G,Malliaras GG. Organic electrochemical transistors based on PEDOT with different anionic polyelectrolyte dopants. J Polym Sci Part B. 2016;54:147–51.

  23. Sessolo M, Rivnay J, Bandiello E, Malliaras GG, Bolink HJ. Ion-selective organic electrochemical transistors. Adv Mater. 2014;26:4803–7.

    Article  CAS  Google Scholar 

  24. Dabke R, Singh G, Dhanabalan A, Lal R, Contractor A. An ion-activated molecular electronic device. Anal Chem. 1997;69:724–7.

    Article  CAS  Google Scholar 

  25. Mousavi Z, Ekholm A, Bobacka J, Ivaska A. Ion-selective organic electrochemical junction transistors based on poly(3, 4-ethylenedioxythiophene) doped with poly (styrene sulfonate). Electroanalysis. 2009;21:472–9.

    Article  CAS  Google Scholar 

  26. Lin P, Yan F, Chan HL. Ion-sensitive properties of organic electrochemical transistors. ACS Appl Mater Interfaces. 2010;2:1637–41.

    Article  CAS  Google Scholar 

  27. Tarabella G, Villani M, Calestani D, Mosca R, Iannotta S, Zappettini A, Coppede N. A single cotton fiber organic electrochemical transistor for liquid electrolyte saline sensing. J Mater Chem. 2012;22:23830–4.

  28. Wang D, Sun G, Chiou BS. A high-throughput, controllable, and environmentally benign fabrication process of thermoplastic nanofibers. Macromol Mater Eng. 2007;292:407–14.

    Article  CAS  Google Scholar 

  29. Pant HR, Bajgai MP, Yi C, Nirmala R, Nam KT, Baek W-I, Kim HY. Effect of successive electrospinning and the strength of hydrogen bond on the morphology of electrospun nylon-6 nanofibers. Colloids Surf A. 2010;370:87–94.

  30. Topolniak I, Gardette J-L, Therias S. Influence of zeolite nanoparticles on photostability of ethylene vinyl alcohol copolymer (EVOH). Polym Degrad Stab. 2015;121:137–48.

    Article  CAS  Google Scholar 

  31. Chougule MA, Shashwati S. Synthesis and characterization of polypyrrole (PPy) thin films. Soft Nanosci Lett. 2011;1:6–10.

    Article  CAS  Google Scholar 

  32. Mokrane S, Makhloufi L, Alonso-Vante N. Electrochemistry of platinum nanoparticles supported in polypyrrole (PPy)/C composite materials. J Solid State Electrochem. 2008;12:569–74.

    Article  CAS  Google Scholar 

  33. Chu K, Yun D-J, Kim D, Park H, Park S-H. Study of electric heating effects on carbon nanotube polymer composites. Org Electron. 2014;15:2734–41.

    Article  CAS  Google Scholar 

  34. Wang Y, Jiang H, Tao Y, Mei T, Liu Q, Liu K, Li M, Wang W, Wang D. Polypyrrole/poly (vinyl alcohol-co-ethylene) nanofiber composites on polyethylene terephthalate substrate as flexible electric heating elements. Compos Part A. 2016;81:234–42.

  35. Andersson P, Forchheimer R, Tehrani P, Berggren M. Printable all-organic electrochromic active-matrix displays. Adv Funct Mater. 2007;17:3074–82.

    Article  CAS  Google Scholar 

  36. Zirkl M, Sawatdee A, Helbig U, Krause M, Scheipl G, Kraker E, Ersman PA, Nilsson D, Platt D, Bodo P, Bauer S, Domann G, Stadlober B. An all-printed ferroelectric active matrix sensor network based on only five functional materials forming a touchless control interface. Adv Mater. 2011;23:2069–74.

  37. Müller C, Hamedi M, Karlsson R, Jansson R, Marcilla R, Inganäs O. Woven electrochemical transistors on silk fibers. Adv Mater. 2011;23:898–901.

    Article  Google Scholar 

  38. Hamedi M, Forchheimer R, Inganäs O. Towards woven logic from organic electronic fibers. Nat Mater. 2007;6:357–62.

    Article  CAS  Google Scholar 

  39. Berggren M, Forchheimer R, Bobacka J, Svensson P-O, Nilsson D, Larsson O, Lvaska A. PEDOT: PSS-based electrochemical transistors for ion-to-electron transduction and sensor signal amplification. Organic semiconductors in sensor applications. pp. 263–280 (2008) Springer Berlin Heidelberg.

  40. WHO (1996) Guidelines for Drinking-Water Quality: World Health Organization.

Download references

Acknowledgments

This work was financially supported by the National Nature Science Foundation (51473129, 51503157, 51503160, and 51273152), Program for New Century Excellent Talents in University (NCET-12-0711) and National Science and Technology support program (2015BAE01B00). All authors are also grateful for the financial support from the plan for Scientific and Technological Innovation Team of Excellent Young Investigator from the Education Department of Hubei Province of China under grant no.T201408 and Innovation Team from Science and Technology Department of Hubei Province of China under grant no.2015CFA028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Wang.

Ethics declarations

The authors declare no competing financial and nonfinancial competing interests.

The authors declare that no research involves human participants and/or animals.

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhou, Z., Qing, X. et al. Ion sensors based on novel fiber organic electrochemical transistors for lead ion detection. Anal Bioanal Chem 408, 5779–5787 (2016). https://doi.org/10.1007/s00216-016-9684-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9684-8

Keywords

Navigation