Skip to main content

Nanofiber Electrodes for Biosensors

  • Living reference work entry
  • First Online:
Handbook of Nanofibers

Abstract

Nanoscience and nanotechnology impact our lives in many ways, and the production of engineered nanofibers represents a scientific breakthrough in material design and the development of new consumer products from electronics, aerospace, automobile, photonic devices, and biosensors to renewable energy materials that are expected to impact almost every industrial and manufacturing sector, including biomedicine and biotechnology (vascular, neural, bone, cartilage, and tendon/ligament tissue engineering) and electrochemical energy storage because of their excellent conductivities, extremely large surface areas, and structural stability. Among the reported functionalities, nanofiber electrodes are popularly used as biosensors and have been extensively investigated due to their importance in solving the challenges in bioanalytical problems including clinical application, health care, chemical and biological analysis, environmental monitoring, and food processing industries. Graphene, graphene oxide, chemically reduced graphene oxide, carbon nanotubes (CNTs), diamond, carbon nanofibers (CNFs), ZnO nanofibers, conductive polymers (like polypyrrole, polyaniline, polythiophene nanofibers), Pt–Au nanoparticle-decorated titania nanotube array, boron-doped diamond nanorods, and gold nanofiber electrodes are some of the biosensing materials used for DNA biosensor, glucose biosensor, electrochemical biosensors, or electrocatalytic biosensor, respectively. Carbon-based materials such as diamond and carbon nanofibers are highly important for the construction of practical nanoscale sensing devices and systems because of high degree of chemical stability, their relatively wide potential windows in aqueous media, good biocompatibility, low cost, and relative chemical inertness in most electrolyte solutions. Innovation and research in the field of nanofibers is paving way for a new era in biosensing application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Clark LC Jr, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45

    Article  Google Scholar 

  2. Thevenot DR, Toth K, Durst RA, Wilson GS (1999) Electrochemical biosensors: recommended definitions and classification. Pure Appl Chem 71:2333–2348

    Article  Google Scholar 

  3. Marx S, Josec MV, Andersenc JD, Russell AJ (2011) Electrospun gold nanofiber electrodes for biosensors. Biosens Bioelectron 26:2981–2986

    Article  Google Scholar 

  4. Kenry, Lim CT (2017) Nanofiber technology: current status and emerging developments. Prog Polym Sci 70:1–17

    Article  Google Scholar 

  5. McNeil SE (2009) Nanoparticle therapeutics: a personal perspective. WIREs Nanomed Nanobiotechnol 1:264–271

    Article  Google Scholar 

  6. Kenry, Lim CT (2013) Synthesis, optical properties, and chemical–biological sensing applications of one-dimensional inorganic semiconductor nanowires. Prog Mater Sci 58:705–748

    Article  Google Scholar 

  7. Yang X, Zou W, Su Y, Zhu Y, Jiang H, Shen J et al (2014) Activated nitrogen-doped carbon nanofibers with hierarchical pore as efficient oxygen reduction reaction catalyst for microbial fuel cells. J Power Sources 266:36–42

    Article  Google Scholar 

  8. Behrens AM, Casey BJ, Sikorski MJ, Wu KL, Tutak W, Sandler AD et al (2014) In situ deposition of PLGA nanofibers via solution blow spinning. ACS Macro Lett 3:249–254

    Article  Google Scholar 

  9. Shang M, Wang W, Sun S, Gao E, Zhang Z, Zhang L et al (2013) The design and realization of a large-area flexible nanofiber-based mat for pollutant degradation: an application in photocatalysis. Nanoscale 5:5036–5042

    Article  Google Scholar 

  10. Zhang P, Zhao X, Zhang X, Lai Y, Wang X, Li J, Wei G, Su Z (2014) Electrospun doping of carbon nanotubes and platinum nanoparticles into the β-phase polyvinylidene difluoride nanofibrous membrane for biosensor and catalysis applications. ACS Appl Mater Interfaces 6:7563–7571

    Article  Google Scholar 

  11. Hasegawa T, Mikuni T (2014) Higher-order structural analysis of nylon-66 nanofibers prepared by carbon dioxide laser supersonic drawing and exhibiting near-equilibrium melting temperature. J Appl Polym Sci 131(40361):1–8

    Google Scholar 

  12. Suzuki A, Hayashi H (2013) Ethylene tetrafluoroethylene nanofibers prepared by CO2 laser supersonic drawing. Express Polym Lett 7(6):519–527

    Article  Google Scholar 

  13. Medeiros ES, Glenn GM, Klamczynski AP, Orts WJ, Mattoso (2010) LHC solution blow spinning. US Patent 0062.08

    Google Scholar 

  14. Hu X, Zhang X, Shen X, Li H, Takai O, Saito N (2014) Plasma-induced synthesis of CuO nanofibers and ZnO nanoflowers in water. Plasma Chem Plasma Process 34:1129–1139

    Article  Google Scholar 

  15. Ren L, Kotha SP (2014) Centrifugal jet spinning for highly efficient and large-scale fabrication of barium titanate nanofibers. Mater Lett 117:153–157

    Article  Google Scholar 

  16. Loscertales IG, Barrero A, Guerrero I, Cortijo R, Marquez M, Ganan-Calvo AM (2002) Micro/nano encapsulation via electrified coaxial liquid jets. Science 295:1695–1698

    Article  Google Scholar 

  17. Hao C, Ding L, Zhang X, Ju H (2007) Biocompatible conductive architecture of carbon nanofiber-doped chitosan prepared with controllable electrodeposition for cytosensing. Anal Chem 79:4442–4447

    Article  Google Scholar 

  18. Hu L, Peng X, Huo K, Chen R, Fu J, Li Y, Lee LYS, Wong KY, Chu PK (2016) Dominant factors governing the electron transfer kinetics and electrochemical biosensing properties of carbon nanofiber arrays. ACS Appl Mater Interfaces 8(42):28872–28879

    Google Scholar 

  19. Jun J, Lee JS, Shin DH, Jang J (2014) Aptamer-functionalized hybrid carbon nanofiber FET-type electrode for a highly sensitive and selective platelet-derived growth factor biosensor. ACS Appl Mater Interfaces 6:13859–13865

    Article  Google Scholar 

  20. Kim SG, Lee JS, Jun J, Shin DH, Jang J (2016) Ultrasensitive bisphenol a field-effect transistor sensor using an aptamer-modified multichannel carbon nanofiber transducer. ACS Appl Mater Interfaces. ACS Appl Mater Interfaces 8(10):6602–6610

    Google Scholar 

  21. Alizadeh T, Mirzagholipur SA (2014) Nafion-free non-enzymatic amperometric glucose sensor based on copper oxide nanoparticles−graphene nanocomposite. Sens Actuators B 198:438–447

    Article  Google Scholar 

  22. Unnikrishnan B, Palanisamy S, Chen SM (2013) A simple electrochemical approach to fabricate a glucose biosensor based on graphene-glucose oxidase biocomposite. Biosens Bioelectron 39:70–75

    Article  Google Scholar 

  23. Sun W, Cao L, Deng Y, Gong S, Shi F, Li G, Sun Z (2013) Direct electrochemistry with enhanced electrocatalytic activity of hemoglobin in hybrid modified electrodes composed of graphene and multi-walled carbon nanotubes. Anal Chim Acta 781:41–47

    Article  Google Scholar 

  24. Serafín V, Agui L, YanezSedeno P, Pingarron JM (2014) Determination of prolactin hormone in serum and urine using an electrochemical immunosensor based on poly(pyrrolepropionic acid)/carbon nanotubes hybrid modified electrodes. Sensors Actuators B Chem 195:494–499

    Article  Google Scholar 

  25. Li SJ, Du JM, Zhang JP, Zhang MJ, Chen J (2014) A glassy carbon electrode modified with a film composed of cobalt oxide nanoparticles and graphene for electrochemical sensing of H2O2. Microchim Acta 181:631–638

    Article  Google Scholar 

  26. Wu D, Guo A, Guo Z, Xie L, Wei Q, Du B (2014) Simultaneous electrochemical detection of cervical cancer markers using reduced graphene oxide-tetraethylene pentamine as electrode materials and distinguishable redox probes as labels. Biosens Bioelectron 54:634–639

    Article  Google Scholar 

  27. Wang J, Shi A, Fang X, Han X, Zhang Y (2014) Ultrasensitive electrochemical supersandwich DNA biosensor using a glassy carbon electrode modified with gold particle-decorated sheets of graphene oxide. Microchim Acta 181:935–940

    Article  Google Scholar 

  28. Pakapongpan S, Mensing JP, Phokharatkul D, Lomas T, Tuantranont (2014) A highly selective electrochemical sensor for ascorbic acid based on a novel hybrid graphene-copper phthalocyanine-polyaniline nanocomposites. Electrochim Acta 133:294–301

    Article  Google Scholar 

  29. Nezamzadeh-Ejhieh A, Pouladsaz P (2014) Voltammetric determination of riboflavin based on electrocatalytic oxidation at zeolite-modified carbon paste electrodes. J Ind Eng Chem 20:2146–2152

    Article  Google Scholar 

  30. Baghizadeh A, Karimi-Maleh H, Khoshnama Z, Hassankhani A, Abbasghorbani M (2015) A voltammetric sensor for simultaneous determination of vitamin C and vitamin B6 in food samples using ZrO2 nanoparticle/ionic liquids carbon paste electrode. Food Anal Methods 8:549–557

    Article  Google Scholar 

  31. Kumar DR, Manoj D, Santhanalakshmi J (2014) Electrostatic fabrication of oleylamine capped nickel oxide nanoparticles anchored multiwall carbon nanotube nanocomposite: a robust electrochemical determination of riboflavin at nanomolar levels. Anal Methods 6:1011–1020

    Article  Google Scholar 

  32. Gupta RK, Periyakaruppan A, Meyyappan M, Koehne JE (2014) Label-free detection of C-reactive protein using a carbon nanofiber based biosensor. Biosens Bioelectron 59:112–119

    Article  Google Scholar 

  33. Tran HV, Piro B, Reisberg S, Tran LD, Duc HT, Pham MC (2013) Label-free and reagentless electrochemical detection of micro-RNAs using a conducting polymer nanostructured by carbon nanotubes: application to prostate cancer biomarker miR-141. Biosens Bioelectron 49:164–169

    Article  Google Scholar 

  34. Gao FL, Zhu Z, Lei JP, Geng Y, Ju HX (2013) Sub-femtomolar electrochemical detection of DNA using surface circular strand-replacement polymerization and gold nanoparticle catalyzed silver deposition for signal amplification. Biosens Bioelectron 39:199–203

    Article  Google Scholar 

  35. Suzuki I, Fukuda M, Shirakawa K, Jiko H, Gotoh M (2013) Carbon nanotube multi-electrode array chips for noninvasive real-time measurement of dopamine, action potentials, and postsynaptic potentials. Biosens Bioelectron 49:270–275

    Article  Google Scholar 

  36. de Souza Ribeiro FA, Tarley CRT, Borges KB, Pereira AC (2013) Development of a square wave voltammetric method for dopamine determination using a biosensor based on multiwall carbon nanotubes paste and crude extract of cucurbita pepo L. Sensors Actuators B Chem 185:743–754

    Article  Google Scholar 

  37. Lin KC, Lin YC, Chen SM (2013) A highly sensitive nonenzymatic glucose sensor based on multi-walled carbon nanotubes decorated with nickel and copper nanoparticles. Electrochim Acta 96:164–172

    Article  Google Scholar 

  38. Vilian ATE, Chen SM, Lou BS (2014) A simple strategy for the immobilization of catalase on multi-walled carbon nanotube/poly (L-Lysine) biocomposite for the detection of H2O2 and iodate. Biosens Bioelectron 61:639–647

    Article  Google Scholar 

  39. Dutta D, Chandra S, Swain AK, Bahadur D (2014) SnO2 quantum dots-reduced graphene oxide composite for enzyme-free ultrasensitive electrochemical detection of urea. Anal Chem 86:5914–5921

    Article  Google Scholar 

  40. Moraes FC, Silva TA, Cesarino I, Lanza MRV, Machado SAS (2013) Antibiotic detection in urine using electrochemical sensors based on vertically aligned carbon nanotubes. Electroanalysis 25:2092–2099

    Article  Google Scholar 

  41. Gheibi S, Karimi-Maleh H, Khalilzadeh MA, Bagheri HJ (2015) A new voltammetric sensor for electrocatalytic determination of vitamin C in fruit juices and fresh vegetable juice using modified multi-wall carbon nanotubes paste electrode. J Food Sci Technol 52:276–284

    Article  Google Scholar 

  42. Rafati AA, Afraz A (2014) Amperometric sensing of anti-HIV drug zidovudine on Ag nanofilm-multiwalled carbon nanotubes modified glassy carbon electrode. Mater Sci Eng C 39:105–112

    Article  Google Scholar 

  43. Ensafi AA, Amini M, Rezaei B (2013) Biosensor based on dsDNA decorated chitosan modified multiwall carbon nanotubes for voltammetric biodetection of herbicide amitrole. Colloids Surf B: Biointerfaces 109:45–51

    Article  Google Scholar 

  44. Sun X, Cao Y, Gong Z, Wang X, Zhang Y, Gao J (2012) An amperometric immunosensor based on multi-walled carbon nanotubes-thionine-chitosan nanocomposite film for chlorpyrifos detection. Sensors 12:17247–17261

    Article  Google Scholar 

  45. Han M, Qu Y, Chen S, Wang Y, Zhang Z, Ma M, Wang Z, Zhan G, Li C (2013) Amperometric biosensor for bisphenol a based on a glassy electrode modified with a nanocomposite made from polylysine, single walled carbon nanotubes and tyrosinase. Microchim Acta 180:989–996

    Article  Google Scholar 

  46. Gomes-Filho SLR, Dias ACMS, Silva MMS, Silva BVM, Dutra RF (2013) A carbon nanotube-based electrochemical immunosensor for cardiac troponin T. Microchem J 109:10–15

    Article  Google Scholar 

  47. Deng W, Liu F, Ge S, Yu J, Yan M, Song X (2014) A dual amplification strategy for ultrasensitive electrochemiluminescence immunoassay based on a Pt nanoparticles dotted graphene−carbon nanotubes composite and carbon dots functionalized mesoporous Pt/Fe. Analyst 139:1713–1720

    Article  Google Scholar 

  48. Cao Q, Zhao H, Yang Y, He Y, Ding N, Wang J et al (2011) Electrochemical immunosensor for casein based on gold nanoparticles and poly(L-arginine)/multi-walled carbon nanotubes composite film functionalized interface. Biosens Bioelectron 26:3469–3474

    Article  Google Scholar 

  49. Silva TA, Zanin H, Vicentini FC, Corat EJ, Fatibello-Filho O (2014) Differential pulse adsorptive stripping voltammetric determination of nanomolar levels of atorvastatin calcium in pharmaceutical and biological samples using a vertically aligned carbon nanotube/graphene oxide electrode. Analyst 139:2832–2841

    Article  Google Scholar 

  50. Golsheikh AM, Huang NM, Lim HN, Zakaria R (2014) One-pot sonochemical synthesis of reduced graphene oxide uniformly decorated with ultrafine silver nanoparticles for non-enzymatic detection of H2O2 and optical detection of mercury ions. RSC Adv 4:36401–36411

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Singh, S. (2018). Nanofiber Electrodes for Biosensors. In: Barhoum, A., Bechelany, M., Makhlouf, A. (eds) Handbook of Nanofibers. Springer, Cham. https://doi.org/10.1007/978-3-319-42789-8_41-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42789-8_41-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42789-8

  • Online ISBN: 978-3-319-42789-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics