Skip to main content
Log in

Ultra-sensitive film sensor based on Al2O3–Au nanoparticles supported on PDDA-functionalized graphene for the determination of acetaminophen

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An electrochemical sensor of acetaminophen based on poly(diallyldimethylammonium chloride) (PDDA)-functionalized reduced graphene-loaded Al2O3–Au nanoparticles coated onto glassy carbon electrode (Al2O3–Au/PDDA/reduced graphene oxide (rGO)/glass carbon electrode (GCE)) were prepared by layer self-assembly technique. The as-prepared electrode-modified materials were characterized by scanning electron microscopy, X-ray powder diffraction, and Fourier transform infrared spectroscopy. The electrocatalytic performances of Al2O3–Au/PDDA/rGO-modified glassy carbon electrode toward the acetaminophen were investigated by cyclic voltammetry and differential pulse voltammetry. The modified electrodes of graphene oxide (GO)/GCE, PDDA/rGO/GCE, and Al2O3–Au/PDDA/rGO/GCE were constructed for comparison and learning the catalytic mechanism. The research showed Al2O3–Au/PDDA/rGO/GCE having good electrochemical performance, attributing to the synergetic effect that comes from the special nanocomposite structure and physicochemical properties of Al2O3–Au nanoparticles and graphene. A low detection limit of 6 nM (S/N = 3) and a wide linear detection range from 0.02 to 200 μM (R 2 = 0.9970) was obtained. The preparation of sensor was successfully applied for the detection of acetaminophen in commercial pharmaceutical pills.

Schematic diagram of synthesis of Al2O3–Au/PDDA/rGO/GCE

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kachoosangi RT, Wildgoose GG, Compton RG. Sensitive adsorptive stripping voltammetric determination of paracetamol at multiwalled carbon nanotube modified basal plane pyrolytic graphite electrode. Anal Chim Acta. 2008;618:54–60.

    Article  CAS  Google Scholar 

  2. Fernandes DM, Silva N, Pereira C, Moura C, Magalhaes JMCS, Baeza BB, et al. MnFe2O4@CNT-N as novel electrochemical nanosensor for determination of caffeine, acetaminophen and ascorbic acid. Sensors Actuators B. 2015;218:128–36.

    Article  CAS  Google Scholar 

  3. Yang LQ, Huang N, Lu QJ, Liu ML, Li HT, Zhang YY, et al. A quadruplet electrochemical platform for ultrasensitive and simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen based on a ferrocene derivative functional AuNPs/carbon dots nanocomposite and grapheme. Anal Chim Acta. 2016;903:69–80.

    Article  CAS  Google Scholar 

  4. Ensafi AA, Karimi-Maleh H, Mallakpour S. Simultaneous determination of ascorbic acid, acetaminophen, and tryptophan by square wave voltammetry using N-(3,4-dihydroxyphenethyl)-3,5-dinitrobenzamide-modified carbon nanotubes paste electrode. Electroanalysis. 2012;24:666–75.

    Article  CAS  Google Scholar 

  5. Mazer M, Perrone J. Acetaminophen-induced nephrotoxicity: pathophysiology, clinical manifestations, and management. J Med Toxicol. 2008;4:2–6.

    Article  Google Scholar 

  6. Olaleye MT, Rocha BTJ. Acetaminophen-induced liver damage in mice: effects of some medicinal plants on the oxidative defence system. Exp Toxicol Pathol. 2008;59:319–27.

    Article  CAS  Google Scholar 

  7. Toklu HZ, Sehirli AO, Velioglu-Ogunc A, Cetinel S, Sener G. Acetaminopheninduced toxicity is prevented by β-d-glucan treatment in mice. Eur J Pharmacol. 2006;543:133–40.

    Article  CAS  Google Scholar 

  8. Beitollahi H, Mohadesi A, Khalilizadeh Mahani S, Karimi-Maleh H, Akbari A. New voltammetric strategy for simultaneous determination of norepinephrine, acetaminophen, and folic acid using a 5-amino-3′,4′-dimethoxybiphenyl-2-ol/carbon nanotube paste electrode. Ionics. 2012;18:703–10.

    Article  CAS  Google Scholar 

  9. Kumar KG, Letha R. Determination of paracetamol in pure form and in dosage forms using N,N-dibromo dimethylhydantoin. J Pharm Biomed Anal. 1997;15:1725–8.

    Article  CAS  Google Scholar 

  10. Hanaee J. Simultaneous determination of acetaminophen and codeine in pharmaceutical preparations by derivative spectrophotometry. Pharm Acta Helv. 1997;72:239–41.

    Article  CAS  Google Scholar 

  11. Mar’in A, Barbas C. CE versus HPLC for the dissolution test in a pharmaceutical formulation containing acetaminophen, phenylephrine and chlorpheniramine. J Pharm Biomed Anal. 2004;35:769–77.

    Article  Google Scholar 

  12. Zhao S, Bai W, Yuan H, Xiao D. Detection of paracetamol by capillary electrophoresis with chemiluminescence detection. Anal Chim Acta. 2006;559:195–9.

    Article  CAS  Google Scholar 

  13. Pulgarin JAM, Bermejo LFG. Flow-injection stopped-flow spectrofluorimetric kinetic determination of paracetamol based on its oxidation reaction by hexacyanoferrate(III). Anal Chim Acta. 1996;333:59–69.

    Article  CAS  Google Scholar 

  14. Fan Y, Liu JH, Lu HT, Zhang Q. Electrochemical behavior and voltammetric determination of paracetamol on Nafion/TiO2-graphene modified glassy carbon electrode. Colloids Surf B. 2011;85:289–92.

    Article  CAS  Google Scholar 

  15. Song JC, Yang J, Zeng JF, Tian J, Zhang L. Graphite oxide film-modified electrode as an electrochemical sensor for acetaminophen. Sensors Actuators B Chem. 2011;155:220–5.

    Article  CAS  Google Scholar 

  16. Zhou N, Chen H, Li JH, Chen LX. Highly sensitive and selective voltammetric detection of mercury(II) using an ITO electrode modified with 5-methyl-2-thiouracil, graphene oxide and gold nanoparticles. Microchim Acta. 2013;180:493–9.

    Article  CAS  Google Scholar 

  17. Liu GT, Chen HF, Lin GM, Ye PP, Wang XP, Jiao YZ, et al. One-step electrodeposition of graphene loaded nickel oxides nanoparticles for acetaminophen detection. Biosens Bioelectron. 2014;56:26–32.

    Article  CAS  Google Scholar 

  18. Zhou N, Li JH, Chen H, Liao CY, Chen LX. A functional graphene oxide-ionic liquid composites-gold nanoparticle sensing platform for ultrasensitive electrochemical detection of Hg2+. Analyst. 2013;138:1091–907.

    Article  CAS  Google Scholar 

  19. Guo P, Song H, Chen X. Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries. Electrochem Commun. 2009;11:1320–4.

    Article  CAS  Google Scholar 

  20. Wang D, Choi D, Li J, Yang Z, Nie Z, Kou R, et al. Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano. 2009;3:907–14.

    Article  CAS  Google Scholar 

  21. Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, et al. Supercapacitor devices based on graphene materials. J Phys Chem C. 2009;113:13103–7.

    Article  CAS  Google Scholar 

  22. Liu S, Tian JQ, Wang L, Sun XP. A method for the production of reduced graphene oxide using benzylamine as a reducing and stabilizing agent and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection. Carbon. 2011;49:3158–64.

    Article  CAS  Google Scholar 

  23. Zheng MX, Gao F, Wang QX, Cai XL, Jiang SL, Huang LZ, et al. Electrocatalytical oxidation and sensitive determination of acetaminophen on glassy carbon electrode modified with graphene–chitosan composite. Mater Sci Eng C. 2013;33:1514–20.

    Article  CAS  Google Scholar 

  24. Zhu WC, Huang H, Gao XC, Ma HY. Electrochemical behavior and voltammetric determination of acetaminophen based on glassy carbon electrodes modified with poly(4-aminobenzoic acid)/electrochemically reduced graphene oxide composite films. Mater Sci Eng C. 2014;45:21–8.

    Article  CAS  Google Scholar 

  25. Fan YF, Zhao YC, Chen DH, Wang X, Peng XL, Tian JN. Synthesis of Pd nanoparticles supported on PDDA functionalized graphene for ethanol electro-oxidation. ScienceDirect. 2015;40:322–9.

    CAS  Google Scholar 

  26. Liu K, Zhang J, Yang G, Wang C, Zhu JJ. Direct electrochemistry and electrocatalysis of hemoglobin based on poly (diallyldimethylammonium chloride) functionalized graphene sheets/room temperature ionic liquid composite film. Electrochem Commun. 2010;12:402–5.

    Article  CAS  Google Scholar 

  27. Jiao SF, Jin J, Wang L. One-pot preparation of Au-RGO/PDDA nanocomposites and their application for nitrite sensing. Sensors Actuators B Chem. 2015;208:36–42.

    Article  CAS  Google Scholar 

  28. Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc. 1958;80:1339.

    Article  CAS  Google Scholar 

  29. Zhang YY, Hu LT, Liu X, Liu BF, Wu KB. Highly-sensitive and rapid detection of ponceau 4R and tartrazine in drinks using alumina microfibers-based electrochemical sensor. Food Chem. 2015;166:352–7.

    Article  CAS  Google Scholar 

  30. Li Y, Gao W, Ci L, Wang C, Ajayan PM. Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon. 2010;48:1124–30.

    Article  CAS  Google Scholar 

  31. Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S. Reduction of graphene oxide via L-ascorbic acid. Chem Commun. 2010;46:1112–4.

    Article  CAS  Google Scholar 

  32. Feng Q, Liu K, Fu J, Zhang Y, Zheng Z, Wang C, et al. Direct electrochemistry of hemoglobin based on nano-composite film of gold nanopaticles and poly (diallyldimethylammonium chloride) functionalized graphene. Electrochim Acta. 2012;60:304–8.

    Article  CAS  Google Scholar 

  33. Patolsky F, Zayats M, Katz E, Willner I. Precipitation of an insoluble product on enzyme monolayer electrodes for biosensor applications: characterization by faradaic impedance spectroscopy, cyclic voltammetry, and microgravimetric quartz crystal microbalance analyses. Anal Chem. 1999;71:3171–80.

    Article  CAS  Google Scholar 

  34. Afkhami A, Khoshsafar H, Bagheri H, Madrakian T. Preparation of NiFe2O4/graphene nanocomposite and its application as a modifier for the fabrication of an electrochemical sensor for the simultaneous determination of tramadol and acetaminophen. Anal Chim Acta. 2014;831:50–9.

    Article  CAS  Google Scholar 

  35. Laviron E. Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. J Electroanal Chem. 1974;52:355–93.

    Article  CAS  Google Scholar 

  36. Brown AP, Anson FC. Cyclic and differential pulse voltammetric behavior of reactants confined to the electrode surface. Anal Chem. 1977;49:1589–95.

    Article  CAS  Google Scholar 

  37. Babaei A, Afrasiabi M, Babazadeh M. A glassy carbon electrode modified with multiwalled carbon nanotube/chitosan composite as a new sensor for simultaneous determination of acetaminophen and mefenamic acid in pharmaceutical preparations and biological samples. Electroanalysis. 2010;22:1743–9.

    Article  CAS  Google Scholar 

  38. Liu M, Chen Q, Lai CL, Zhang YY, Deng JH, Li HT, et al. A double signal amplification platform for ultrasensitive and simultaneous detection of ascorbic acid, dopamine, uric acid and acetaminophen based on a nanocomposite of ferrocene thiolate stabilized Fe3O4@Au nanoparticles with graphene sheet. Biosens Bioelectron. 2013;48:75–81.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC; nos. 21345005 and 21205048), the Shandong Provincial Natural Science Foundation of China (no. ZR2012BM020), and the Scientific and Technological Development Plan Item of Jinan City in China (no. 201202088).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuannan Luo.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 103 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Sun, W., Wang, X. et al. Ultra-sensitive film sensor based on Al2O3–Au nanoparticles supported on PDDA-functionalized graphene for the determination of acetaminophen. Anal Bioanal Chem 408, 5567–5576 (2016). https://doi.org/10.1007/s00216-016-9654-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9654-1

Keywords

Navigation