Skip to main content

Advertisement

Log in

Magnetically responsive polycaprolactone nanoparticles for progesterone screening in biological and environmental samples using gas chromatography

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A new Fe3O4/poly(є-caprolactone) (PCL) magnetite nanocomposite was fabricated and used as a sorbent for magnetically mediated PCL microspheres solid-phase extraction (MM-PCL-SPE) followed by gas chromatography–flame ionization detection (GC–FID) for monitoring of progesterone (PGN) hormone in biological and environmental matrices, namely blood serum, tap water, urine, and hospital wastewater. The nanomagnetite core of the sorbent was synthesized by a co-precipitation method. Magnetic nanoparticles (MNPs) were then microencapsulated with PCL microspheres using emulsion polymerization. The nanocomposite was characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The magnetite sorbent can be effectively dispersed in aqueous solution and attracted to an external magnetic field. The MM-PCL-SPE process for PGN assay involved (a) dispersion of the sorbent in the donor phase aqueous solution with sonication, (b) exposure to a magnetic field to collect sorbent that had adsorbed the analyte, and (c) solvent desorption of extracted PGN for GC–FID analysis. The work demonstrates the usefulness of MM-PCL-SPE in the rapid and sensitive monitoring of trace amounts of PGN in real samples. The limit of detection (LOD) and limit of quantification (LOQ) were 1.00 and 3.30 ng/mL, respectively. The relative recoveries in real samples were adequate. Linearity was observed over a wide range of 2.2–10,000.0 ng/mL in aqueous media and urine and 0.01–70.0 μg/mL in blood serum.

In this research new Fe3O4/poly(є-caprolactone) (PCL) magnetite microspheres were developed as an efficient sorbent for solid-phase extraction of progesterone hormone in biological and environmental matrices

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Baulieu E-E, Schumacher M. Progesterone as a neuroactive neurosteroid, with special reference to the effect of progesterone on myelination. Steroids. 2000;65(10):605–12.

    Article  CAS  Google Scholar 

  2. Huang X, Yuan D, Huang B. Determination of steroid sex hormones in urine matrices by stir bar sorptive extraction based on monolithic material and liquid chromatography with diode array detection. Talanta. 2008;75(1):172–7.

    CAS  Google Scholar 

  3. Almeida C, Nogueira J. Determination of steroid sex hormones in water and urine matrices by stir bar sorptive extraction and liquid chromatography with diode array detection. J Pharm Biomed Anal. 2006;41(4):1303–11.

    Article  CAS  Google Scholar 

  4. Aufrère MB, Benson H. Progesterone: an overview and recent advances. J Pharm Sci. 1976;65(6):783–800.

    Article  Google Scholar 

  5. Augustine A, Mathew B. Synthesis of carbon nanotube incorporated molecular imprinted polymer with binding affinity towards testosterone. ISRN Polym Sci. 2014;2014.

  6. Singh KP, Prajapati RK, Ahlawat S, Ahlawat S, Mungali M, Kumar S. Use of isoproturon imprinted polymer membranes as a selective recognition platform in a resistance based electrochemical sensor. Open J Appl Biosens. 2013;2(1):20–8.

  7. Lewis Sr RJ. Carcinogenically active chemicals. New York: Van Nostrand Reinhold; 1990.

    Google Scholar 

  8. Recker RR, Davies KM, Dowd RM, Heaney RP. The effect of low-dose continuous estrogen and progesterone therapy with calcium and vitamin D on bone in elderly women: a randomized, controlled trial. Ann Intern Med. 1999;130(11):897–904.

    Article  CAS  Google Scholar 

  9. Nagaya N, Maren S. Sex, steroids, and fear. Biol Psychiatry. 2015;78(3):152–3.

    Article  Google Scholar 

  10. Smith MD. Determination of synthetic adrenocorticosteroids in pharmaceutical preparations and biological fluids by HPLC. In: Kautsky MP, editor. Steroid analysis by HPLC. Recent applications. New York: Marcel Dekker; 1981. p. 105–44.

    Google Scholar 

  11. Taylor RL, Machacek D, Singh RJ. Validation of a high-throughput liquid chromatography–tandem mass spectrometry method for urinary cortisol and cortisone. Clin Chem. 2002;48(9):1511–9.

    CAS  Google Scholar 

  12. Petrović M, Eljarrat E, de Alda MJL, Barceló D. Analysis and environmental levels of endocrine-disrupting compounds in freshwater sediments. TrAC Trends Anal Chem. 2001;20(11):637–48.

    Article  Google Scholar 

  13. Alda MJ, Barceló D. Review of analytical methods for the determination of estrogens and progestogens in waste waters. Fresenius J Anal Chem. 2001;371(4):437–47.

    Article  Google Scholar 

  14. Petrovic M, Eljarrat E, de Alda MJL, Barceló D. Recent advances in the mass spectrometric analysis related to endocrine disrupting compounds in aquatic environmental samples. J Chromatogr A. 2002;974(1):23–51.

    Article  CAS  Google Scholar 

  15. Herold DA, Fitzgerald RL. Immunoassays for testosterone in women: better than a guess? Clin Chem. 2003;49(8):1250–1.

    Article  CAS  Google Scholar 

  16. Stanczyk FZ, Cho MM, Endres DB, Morrison JL, Patel S, Paulson RJ. Limitations of direct estradiol and testosterone immunoassay kits. Steroids. 2003;68(14):1173–8.

    Article  CAS  Google Scholar 

  17. Taieb J, Mathian B, Millot F, et al. Testosterone measured by 10 immunoassays and by isotope-dilution gas chromatography–mass spectrometry in sera from 116 men, women, and children. Clin Chem. 2003;49(8):1381–95.

    Article  CAS  Google Scholar 

  18. Gröschl M, Wagner R, Rauh M, Dörr HG. Stability of salivary steroids: the influences of storage, food and dental care. Steroids. 2001;66(10):737–41.

    Article  Google Scholar 

  19. Wu Q, Wang L, Wu D, Duan C, Guan Y. Recent advances in sample preparation methods of plant hormones. Se Pu. 2014;32(4):319–29.

    CAS  Google Scholar 

  20. Wen Y, Chen L, Li J, Liu D, Chen L. Recent advances in solid-phase sorbents for sample preparation prior to chromatographic analysis. TrAC Trends Anal Chem. 2014;59:26–41.

    Article  CAS  Google Scholar 

  21. Liu W, Zhang L, Fan L, et al. An improved hollow fiber solvent-stir bar microextraction for the preconcentration of anabolic steroids in biological matrices with determination by gas chromatography–mass spectrometry. J Chromatogr A. 2012;1233:1–7.

    Article  CAS  Google Scholar 

  22. Rezazadeh M, Yamini Y, Seidi S. Microextraction in urine samples for gas chromatography: a review. Bioanalysis. 2014;6(19):2663–84.

    Article  CAS  Google Scholar 

  23. Ocaña-González JA, Fernández-Torres R, Bello-López MÁ, Ramos-Payán M. New developments in microextraction techniques in bioanalysis. A review. Anal Chim Acta. 2016;905:8–23.

    Article  Google Scholar 

  24. Ríos A, Zougagh M, Bouri M. Magnetic (nano) materials as an useful tool for sample preparation in analytical methods. A review. Anal Methods. Anal Methods. 2013;5(18):4558–73.

    Article  Google Scholar 

  25. Xie L, Jiang R, Zhu F, Liu H, Ouyang G. Application of functionalized magnetic nanoparticles in sample preparation. Anal Bioanal Chem. 2014;406(2):377–99.

    Article  CAS  Google Scholar 

  26. Ramimoghadam D, Bagheri S, Hamid SBA. Stable monodisperse nanomagnetic colloidal suspensions: an overview. Colloids Surf B: Biointerfaces. 2015;133:388–411.

    Article  CAS  Google Scholar 

  27. Lu AH, Salabas EL, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Engl. 2007;46(8):1222–44.

    Article  CAS  Google Scholar 

  28. Setyawan H, Fajaroh F, Widiyastuti W, Winardi S, Lenggoro IW, Mufti N. One-step synthesis of silica-coated magnetite nanoparticles by electrooxidation of iron in sodium silicate solution. J Nanoparticle Res. 2012;14(4):1–9.

    Article  Google Scholar 

  29. Im SH, Herricks T, Lee YT, Xia Y. Synthesis and characterization of monodisperse silica colloids loaded with superparamagnetic iron oxide nanoparticles. Chem Phys Lett. 2005;401(1):19–23.

    Article  CAS  Google Scholar 

  30. Synaridou M-ES, Sakkas VA, Stalikas CD, Albanis TA. Evaluation of magnetic nanoparticles to serve as solid-phase extraction sorbents for the determination of endocrine disruptors in milk samples by gas chromatography mass spectrometry. J Chromatogr A. 2014;1348:71–9.

    Article  CAS  Google Scholar 

  31. Tadmor R, Rosensweig RE, Frey J, Klein J. Resolving the puzzle of ferrofluid dispersants. Langmuir. 2000;16(24):9117–20.

    Article  CAS  Google Scholar 

  32. Yu C-J, Lin C-Y, Liu C-H, Cheng T-L, Tseng W-L. Synthesis of poly (diallyldimethylammonium chloride)-coated Fe3O4 nanoparticles for colorimetric sensing of glucose and selective extraction of thiol. Biosens Bioelectron. 2010;26(2):913–7.

    Article  CAS  Google Scholar 

  33. Utkan GG, Sayar F, Batat P, Ide S, Kriechbaum M, Pişkin E. Synthesis and characterization of nanomagnetite particles and their polymer coated forms. J Colloid Interface Sci. 2011;353(2):372–9.

    Article  CAS  Google Scholar 

  34. Dash TK, Konkimalla VB. Poly-є-caprolactone based formulations for drug delivery and tissue engineering: a review. J Control Release. 2012;158(1):15–33.

    Article  CAS  Google Scholar 

  35. Berry CC, Curtis AS. Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys. 2003;36(13):R198.

    Article  CAS  Google Scholar 

  36. Pitt CG, Jeffcoat AR, Zweidinger RA, Schindler A. Sustained drug delivery systems. I. The permeability of poly (ϵ‐caprolactone), poly (DL‐lactic acid), and their copolymers. J Biomed Mater Res. 1979;13(3):497–507.

    Article  CAS  Google Scholar 

  37. Parthiban A, Likhitsup A, Choo FM, Chai CLL. Triblock copolymers composed of soft and semi-crystalline segments—synthesis and characterization of poly [(n-butyl acrylate)-block-(ε-caprolactone)-block-(L-lactide)]. Polym Chem. 2010;1(3):333–8.

    Article  CAS  Google Scholar 

  38. Williamson MR, Chang H-I, Coombes AG. Gravity spun polycaprolactone fibres: controlling release of a hydrophilic macromolecule (ovalbumin) and a lipophilic drug (progesterone). Biomaterials. 2004;25(20):5053–60.

    Article  CAS  Google Scholar 

  39. Guilherme MR, Mauricio MR, Tenorio-Neto ET, et al. Polycaprolactone nanoparticles containing encapsulated progesterone prepared using a scCO2 emulsion drying technique. Mater Lett. 2014;124:197–200.

    Article  CAS  Google Scholar 

  40. Chang R-K, Price JC, Whitworth CW. Ehancement of dissolution rate by incorporation into a water insoluble polymer, polycaprolactone. Drug Dev Ind Pharm. 1987;13(2):249–56.

    Article  CAS  Google Scholar 

  41. Fenton M, Sim JS. Determination of egg yolk cholesterol content by on-column capillary gas chromatography. J Chromatogr A. 1991;540:323–9.

    Article  CAS  Google Scholar 

  42. Heftmann E. Chromatography: fundamentals and applications of chromatography and related differential migration methods-Part B: applications. New York: Elsevier; 2004.

    Google Scholar 

  43. Dinh TT, Thompson LD, Galyean ML, Brooks JC, Patterson KY, Boylan LM. Cholesterol content and methods for cholesterol determination in meat and poultry. Comp Rev Food Sci Food Saf. 2011;10(5):269–89.

    Article  CAS  Google Scholar 

  44. Shimada K, Mitamura K, Higashi T. Gas chromatography and high-performance liquid chromatography of natural steroids. J Chromatogr A. 2001;935(1):141–72.

    Article  CAS  Google Scholar 

  45. Osman H, Chin YK. Comparative sensitivities of cholesterol analysis using GC, HPLC and spectrophotometric methods. Malays J Anal Sci . 2006;10(2):205–10.

    Google Scholar 

  46. Nezhadali A, Es’haghia Z, Khatibi AD. Selective extraction of progesterone hormones from environmental and biological samples using polypyrrole molecularly imprinted polymer and determination by gas chromatography. Anal Methods. 2016;8:1813–27.

    Article  CAS  Google Scholar 

  47. Kaykhaii M, Khatibi A. Determination of butyltin stabilizers in PVC using liquid-phase microextraction with electrothermal atomic absorption spectrometry. J Iran Chem Soc. 2011;8(2):374–81.

    Article  CAS  Google Scholar 

  48. Hwang B-S, Wang J-T, Choong Y-M. A simplified method for the quantification of total cholesterol in lipids using gas chromatography. J Food Compos Anal. 2003;16(2):169–78.

    Article  CAS  Google Scholar 

  49. Mondal J, Sen T, Bhaumik A. Fe3O4@ mesoporous SBA-15: a robust and magnetically recoverable catalyst for one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones via the Biginelli reaction. Dalton Trans. 2012;41(20):6173–81.

    Article  CAS  Google Scholar 

  50. Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26(18):3995–4021.

    Article  CAS  Google Scholar 

  51. Perez MH, Zinutti C, Lamprecht A, et al. The preparation and evaluation of poly(ϵ-caprolactone) microparticles containing both a lipophilic and a hydrophilic drug. J Control Release. 2000;65(3):429–38.

    Article  Google Scholar 

  52. Holland NT, Smith MT, Eskenazi B, Bastaki M. Biological sample collection and processing for molecular epidemiological studies. Mutat Res. 2003;543(3):217–34.

    Article  CAS  Google Scholar 

  53. Álvarez-Sánchez B, Priego-Capote F, Mata-Granados J, de Castro ML. Automated determination of folate catabolites in human biofluids (urine, breast milk and serum) by on-line SPE–HILIC–MS/MS. J Chromatogr A. 2010;1217(28):4688–95.

    Article  Google Scholar 

  54. Ferreira SL, Ferreira JR, Dantas AF, Lemos VA, Araújo NM, Costa AS. Copper determination in natural water samples by using FAAS after preconcentration onto amberlite XAD-2 loaded with calmagite. Talanta. 2000;50(6):1253–9.

    Article  CAS  Google Scholar 

  55. Li YF, Zhang XQ, Hu WY, Li Z, Liu PX, Zhang ZQ. Rapid screening of drug-protein binding using high-performance affinity chromatography with columns containing immobilized human serum albumin. J Anal Methods Chem. 2013;2013:1–7.

    Google Scholar 

  56. Kurečková K, Maralı́ková B, Ventura K. Supercritical fluid extraction of steroids from biological samples and first experience with solid-phase microextraction–liquid chromatography. J Chromatogr B. 2002;770(1):83–9.

    Article  Google Scholar 

  57. Rasmussen KE, Pedersen-Bjergaard S. Developments in hollow fibre-based, liquid-phase microextraction. TrAC Trends Anal Chem. 2004;23(1):1–10.

    Article  CAS  Google Scholar 

  58. Baltussen E, Sandra P, David F, Cramers C. Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: theory and principles. Sort. 1999;100:250.

    Google Scholar 

  59. León V, Alvarez B, Cobollo M, Munoz S, Valor I. Analysis of 35 priority semivolatile compounds in water by stir bar sorptive extraction–thermal desorption–gas chromatography–mass spectrometry: I. Method optimisation. J Chromatogr A. 2003;999(1):91–101.

    Article  Google Scholar 

  60. Penalver A, Garcıa V, Pocurull E, Borrull F, Marcé R. Stir bar sorptive extraction and large volume injection gas chromatography to determine a group of endocrine disrupters in water samples. J Chromatogr A. 2003;1007(1):1–9.

    Article  CAS  Google Scholar 

  61. Allen who co-discovered WM, Steroidal P. Progesterone Explained.

  62. Guo L, Deng Q, Fang G, Gao W, Wang S. Preparation and evaluation of molecularly imprinted ionic liquids polymer as sorbent for on-line solid-phase extraction of chlorsulfuron in environmental water samples. J Chromatogr A. 2011;1218(37):6271–7.

    Article  CAS  Google Scholar 

  63. Stafiej A, Pyrzynska K, Regan F. Determination of anti‐inflammatory drugs and estrogens in water by HPLC with UV detection. J Sep Sci. 2007;30(7):985–91.

    Article  CAS  Google Scholar 

  64. Yang L, Lan C, Liu H, Dong J, Luan T. Full automation of solid-phase microextraction/on-fiber derivatization for simultaneous determination of endocrine-disrupting chemicals and steroid hormones by gas chromatography–mass spectrometry. Anal Bioanal Chem. 2006;386(2):391–7.

    Article  CAS  Google Scholar 

  65. Yilmaz B, Kadioglu Y. Determination of 17 β-estradiol in rabbit plasma by gas chromatography with flame ionization detection. Indian J Pharm Sci. 2012;74(3):248.

    Article  CAS  Google Scholar 

  66. Kuster M, de Alda MJL, Hernando MD, Petrovic M, Martín-Alonso J, Barceló D. Analysis and occurrence of pharmaceuticals, estrogens, progestogens and polar pesticides in sewage treatment plant effluents, river water and drinking water in the Llobregat river basin (Barcelona, Spain). J Hydrol. 2008;358(1):112–23.

    Article  CAS  Google Scholar 

  67. Streck G. Chemical and biological analysis of estrogenic, progestagenic and androgenic steroids in the environment. TrAC Trends Anal Chem. 2009;28(6):635–52.

    Article  CAS  Google Scholar 

  68. Guild GE, Lenehan CE, Walker GS. Surface-assisted laser desorption ionisation time-of-flight mass spectrometry with an activated carbon surface for the rapid detection of underivatised steroids. Int J Mass Spectrom. 2010;294(1):16–22.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Payame Noor University and Food and Drug Laboratory of Zahedan University of Medical Sciences for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zarrin Es’haghi.

Ethics declarations

Conflict of interests

All of the authors have no pecuniary or other personal interest, direct or indirect, in any matter that raises or may raise a conflict with our duties as an academic member in Payame Noor University, Iran. Our participation in this research was entirely voluntary. It was their choice whether to participate or not.

Written informed consent was obtained from all volunteers who donated serum and urine samples.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Es’haghi, Z., Nezhadali, A. & Khatibi, AD. Magnetically responsive polycaprolactone nanoparticles for progesterone screening in biological and environmental samples using gas chromatography. Anal Bioanal Chem 408, 5537–5549 (2016). https://doi.org/10.1007/s00216-016-9650-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9650-5

Keywords

Navigation