Skip to main content

Advertisement

Log in

Rapid determination of sulfonamide residues in pork by surface-modified hydrophilic electrospun nanofibrous membrane solid-phase extraction combined with ultra-performance liquid chromatography

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This study aimed to rapidly determine 13 representative sulfonamide (SA) residues in pork by using a surface-modified hydrophilic polystyrene sulfonic acid (PSSA) electrospun nanofibrous membrane as the solid-phase extraction (SPE) pretreatment sorbent, followed by ultra-performance liquid chromatography (UPLC) analysis. The highly hydrophilic nature of PSSA nanofibrous membrane created by vacuum plasma treatment was characterized using Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), water contact angle, and X-ray photoelectron spectroscopy (XPS) measurements. In the pretreatment procedures, 13 SA standards, which were spiked in the fatty pork samples, were extracted, enriched, and purified by the SPE procedure based on the principle of ion exchange with the sulfonic groups on the PSSA chains. Under the optimized conditions, the calibration curves of 13 SA compounds showed good linearities with correlation coefficients (r) of more than 0.99 in the range of 50.0–200 μg kg−1. The mean recoveries of 13 SAs at the spiked concentrations of 50, 100, and 200 μg kg−1 were in the range of 70.3–92.5 % with average RSDs (n = 6) of less than 15 % (except for sulfacetamide, 56.9–61.6 %). Compared with other pretreatment methods reported previously, less organic solvent (especially without degreasing the extract with n-hexane) was used in this time-saving SPE procedure, which avoids the possibility of emulsification and therefore enhances the recoveries. The developed and validated analysis method was sensitive, accurate, rapid, convenient, environmentally friendly, and was successfully applied for the detection of 13 SA residues in commercially available pork samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BE:

Binding energy

DMF:

N,N-dimethylformamide

EDTA:

Ethylenediaminetetraacetic acid

FE-SEM:

Field emission scanning electron microscopy

FT-IR:

Fourier transform infrared spectroscopy

HLB:

Hydrophilic-lipophilic balance

HPLC:

High-performance liquid chromatography

LOD:

Limit of detection

LOQ:

Limit of quantitation

MCX:

Mixed-mode cation exchange

MIP:

Molecularly imprinted polymer

MRL:

Maximum residue limit

MSPD:

Matrix solid-phase dispersion

MWCNT:

Multi-walled carbon nanotube

PP:

Polypropylene

PS:

Polystyrene

PSSA:

Polystyrene sulfonic acid

QC:

Quality control

SFA:

Sulfacetamide

SA:

Sulfonamide

SDM:

Sulfadimethoxine

SIZ:

Sulfisoxazole

SM1 :

Sulfamerazine

SM2 :

Sulfamethazine

SML:

Sulfabenzamide

SMM:

Sulfamonomethoxine

SMP:

Sulfamethoxypyridazine

SMZ:

Sulfamethoxazole

SP:

Sulfapyridine

SPD:

Sulfachlorpyridazine

SPE:

Solid-phase extraction

SPP:

Sulfaphenazole

SX:

Sulfamoxol

THF:

Tetrahydrofuran

UPLC:

Ultra-performance liquid chromatography

XPS:

X-ray photoelectron spectroscopy

References

  1. Kim K-R, Owens G, Kwon S-I, So K-H, Lee D-B, Ok YS. Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment. Water, Air, Soil Pollut. 2011;214(1–4):163–74. doi:10.1007/s11270-010-0412-2.

    Article  CAS  Google Scholar 

  2. Bialk-Bielinska A, Stolte S, Arning J, Uebers U, Boschen A, Stepnowski P, et al. Ecotoxicity evaluation of selected sulfonamides. Chemosphere. 2011;85(6):928–33. doi:10.1016/j.chemosphere.2011.06.058.

    Article  CAS  Google Scholar 

  3. Baran W, Adamek E, Ziemianska J, Sobczak A. Effects of the presence of sulfonamides in the environment and their influence on human health. J Hazard Mater. 2011;196:1–15. doi:10.1016/j.jhazmat.2011.08.082.

    Article  CAS  Google Scholar 

  4. Wang X, Li K, Shi D, Xiong N, Jin X, Yi J, et al. Development of an immunochromatographic lateral-flow test strip for rapid detection of sulfonamides in eggs and chicken muscles. J Agric Food Chem. 2007;55:2072–8. doi:10.1021/jf062523h.

    Article  CAS  Google Scholar 

  5. Determination of sulfonamides residues in animal-derived food by high-performance liquid chromatographic method established by the Ministry of Agriculture of the People's Republic of China, GB 29694–2013.

  6. Samanidou VF, Tolika EP, Papadoyannis IN. Chromatographic residue analysis of sulfonamides in foodstuffs of animal origin. Sep Purif Rev. 2008;37(4):325–71. doi:10.1080/15422110802177472.

    Article  CAS  Google Scholar 

  7. Nebot C, Regal P, Martinez B, Miranda J, Cepeda A, Fente C. Confirmatory method for nine sulfonamides in miniature bovine muscle samples using HPLC/MS/MS without using SPE. J Food Drug Anal. 2010;18(3):191–201.

    CAS  Google Scholar 

  8. Hoff RB, Barreto F, Kist TB. Use of capillary electrophoresis with laser-induced fluorescence detection to screen and liquid chromatography-tandem mass spectrometry to confirm sulfonamide residues: validation according to European Union 2002/657/EC. J Chromatogr A. 2009;1216(46):8254–61. doi:10.1016/j.chroma.2009.07.074.

    Article  Google Scholar 

  9. D’Orazio G, Rocchi S, Fanali S. Nano-liquid chromatography coupled with mass spectrometry: Separation of sulfonamides employing non-porous core–shell particles. J Chromatogr A. 2012;1255:277–85. doi:10.1016/j.chroma.2012.03.032.

    Article  Google Scholar 

  10. Gamba V, Terzano C, Fioroni L, Moretti S, Dusi G, Galarini R. Development and validation of a confirmatory method for the determination of sulphonamides in milk by liquid chromatography with diode array detection. Anal Chim Acta. 2009;637(1–2):18–23. doi:10.1016/j.aca.2008.09.022.

    Article  CAS  Google Scholar 

  11. Kishida K, Furusawa N. Matrix solid-phase dispersion extraction and high-performance liquid chromatographic determination of residual sulfonamides in chicken. J Chromatogr A. 2001;937:49–55.

    Article  CAS  Google Scholar 

  12. Fang GZ, He JX, Wang S. Multiwalled carbon nanotubes as sorbent for on-line coupling of solid-phase extraction to high-performance liquid chromatography for simultaneous determination of 10 sulfonamides in eggs and pork. J Chromatogr A. 2006;1127(1–2):12–7. doi:10.1016/j.chroma.2006.06.024.

    Article  CAS  Google Scholar 

  13. Gao R, Zhang J, He X, Chen L, Zhang Y. Selective extraction of sulfonamides from food by use of silica-coated molecularly imprinted polymer nanospheres. Anal Bioanal Chem. 2010;398(1):451–61. doi:10.1007/s00216-010-3909-z.

    Article  CAS  Google Scholar 

  14. He J, Tang H, You L, Zhan H, Zhu J, Lu K. Fragment-imprinted microspheres for the extraction of sulfonamides. Microchim Acta. 2013;180(9–10):903–10. doi:10.1007/s00604-013-1011-x.

    Article  CAS  Google Scholar 

  15. Karimi M, Aboufazeli F, Zhad HRLZ, Sadeghi O, Najafi E. Determination of sulfonamides in chicken meat by magnetic molecularly imprinted polymer coupled to HPLC–UV. Food Anal Methods. 2014;7(1):73–80. doi:10.1007/s12161-013-9600-1.

    Article  Google Scholar 

  16. Wan Ibrahim WA, Abd Ali LI, Sulaiman A, Sanagi MM, Aboul-Enein HY. Application of solid-phase extraction for trace elements in environmental and biological samples: a review. Crit Rev Anal Chem. 2014;44(3):233–54. doi:10.1080/10408347.2013.855607.

    Article  CAS  Google Scholar 

  17. Buszewski B, Szultka M. Past, present, and future of solid phase extraction: a review. Crit Rev Anal Chem. 2012;42(3):198–213. doi:10.1080/07373937.2011.645413.

    Article  CAS  Google Scholar 

  18. Dmitrienko SG, Kochuk EV, Apyari VV, Tolmacheva VV, Zolotov YA. Recent advances in sample preparation techniques and methods of sulfonamides detection–a review. Anal Chim Acta. 2014;850:6–25. doi:10.1016/j.aca.2014.08.023.

    Article  CAS  Google Scholar 

  19. http://www.waters.com/waters/en_US/Oasis-Sample-Extraction-Products

  20. Dragan ES, editor. Advanced separations by specialized sorbents. Boca Raton: CRC; 2014. ISBN: 978-1-4822-2055-1.

  21. Chigome S, Torto N. Electrospun nanofiber-based solid-phase extraction. TrAC, Trends Anal Chem. 2012;38:21–31. doi:10.1016/j.trac.2012.04.011.

    Article  CAS  Google Scholar 

  22. Teo W-E, Inai R, Ramakrishna S. Technological advances in electrospinning of nanofibers. Sci Technol Adv Mater. 2011;12(1):013002. doi:10.1088/1468-6996/12/1/013002.

    Article  Google Scholar 

  23. Kang X, Pan C, Xu Q, Yao Y, Wang Y, Qi D, et al. The investigation of electrospun polymer nanofibers as a solid-phase extraction sorbent for the determination of trazodone in human plasma. Anal Chim Acta. 2007;587(1):75–81. doi:10.1016/j.aca.2007.01.021.

    Article  CAS  Google Scholar 

  24. Anyakora, Ifegwu C, Torto N, Chigome S. Application of nanofiber-packed SPE for determination of urinary 1-hydroxypyrene level using HPLC. Anal Chem Insights. 2014:17. doi:10.4137/aci.s13560.

  25. Qi D, Kang X, Chen L, Zhang Y, Wei H, Gu Z. Electrospun polymer nanofibers as a solid-phase extraction sorbent for the determination of trace pollutants in environmental water. Anal Bioanal Chem. 2008;390(3):929–38. doi:10.1007/s00216-007-1747-4.

    Article  CAS  Google Scholar 

  26. Hu WY, Kang XJ, Zhang C, Yang J, Ling R, Liu EH, et al. Packed-fiber solid-phase extraction coupled with high performance liquid chromatography-tandem mass spectrometry for determination of diethylstilbestrol, hexestrol, and dienestrol residues in milk products. J Chromatogr, B. 2014;957:7–13. doi:10.1016/j.jchromb.2014.02.036.

    Article  CAS  Google Scholar 

  27. Ahmed FE, Lalia BS, Hashaikeh R. A review on electrospinning for membrane fabrication: challenges and applications. Desalination. 2015;356:15–30. doi:10.1016/j.desal.2014.09.033.

    Article  CAS  Google Scholar 

  28. Xu Q, Zhang N, Yin X, Wang M, Shen Y, Xu S, et al. Development and validation of a nylon6 nanofibers mat-based SPE coupled with HPLC method for the determination of docetaxel in rabbit plasma and its application to the relative bioavailability study. J Chromatogr, B. 2010;878(26):2403–8. doi:10.1016/j.jchromb.2010.07.011.

    Article  CAS  Google Scholar 

  29. Xu Q, Yin X, Wu S, Wang M, Wen Z, Gu Z. Determination of phthalate esters in water samples using Nylon6 nanofibers mat-based solid-phase extraction coupled to liquid chromatography. Microchim Acta. 2010;168(3–4):267–75. doi:10.1007/s00604-010-0290-8.

    Article  CAS  Google Scholar 

  30. Cho E, Kim C, Park J-Y, Hwang CH, Kim JH, Kim YA, et al. Surface modification of electrospun polyvinylidene fluoride nanofiber membrane by plasma treatment for protein detection. J Nanosci Nanotechnol. 2013;13(1):674–7. doi:10.1166/jnn.2013.6925.

    Article  CAS  Google Scholar 

  31. Yan D, Jones J, Yuan XY, Xu XH, Sheng J, Lee JC, et al. Plasma treatment of electrospun PCL random nanofiber meshes (NFMs) for biological property improvement. J Biomed Mater Res A. 2013;101(4):963–72. doi:10.1002/jbm.a.34398.

    Article  CAS  Google Scholar 

  32. Kim JH, Chainey M, Elaasser MS, Vanerhoff JW. Preparation of highly sulfonated polystyrene model colloids. J Poly Sci A. 1989;27(10):3187–99. doi:10.1002/pola.1989.080271001.

    Article  CAS  Google Scholar 

  33. Sunkara HB, Jethmalani JM, Ford WT. Synthesis of cross-linked of poly(styrene-co-sodium styrenesulfonate) latexes. J Poly Sci A. 1994;32(8):1431–5. doi:10.1002/pola.1994.080320804.

    Article  CAS  Google Scholar 

  34. Chen R, Yang Y, Wang N, Hao L, Li L, Guo X, et al. Application of packed porous nanofibers-solid-phase extraction for the detection of sulfonamide residues from environmental water samples by ultra high performance liquid chromatography with mass spectrometry. J Sep Sci. 2015;38(5):749–56. doi:10.1002/jssc.201400982.

    Article  CAS  Google Scholar 

  35. Tiwari A, Terada D, Yoshikawa C, Kobayashi H. An enzyme-free highly glucose-specific assay using self-assembled aminobenzene boronic acid upon polyelectrolytes electrospun nanofibers-mat. Talanta. 2010;82:1725–32. doi:10.1016/j.talanta.2010.07.078.

    Article  CAS  Google Scholar 

  36. Safinia L, Wilson K, Mantalaris A, Bismarck A. Through-thickness plasma modification of biodegradable and nonbiodegradable porous polymer constructs. J Biomed Mater Res A. 2008;87(3):632–42. doi:10.1002/jbm.a.31731.

    Article  Google Scholar 

  37. Jönsson SKM, Salaneck WR, Fahlman M. X-ray photoelectron spectroscopy study of the metal/polymer contacts involving aluminum and poly(3,4–ethylenedioxythiophene) – poly(styrenesulfonic acid) derivatives. J Mater Res. 2003;18(5):1219–26. doi:10.1557/JMR.2003.0167.

    Article  Google Scholar 

Download references

Acknowledgements

The project was sponsored by the Jiangsu Province Science Foundation for Youths (BK20130644) and the Fundamental Research Funds for the Central Universities (JKQZ2013006). Dr. Rong Chen would also like to acknowledge the China Scholarship Council (CSC 201407060048) for granting a scholarship that enabled her to pursue this work at National University of Singapore, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lingling Tian or Weiyang Shen.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Yang, Y., Qu, B. et al. Rapid determination of sulfonamide residues in pork by surface-modified hydrophilic electrospun nanofibrous membrane solid-phase extraction combined with ultra-performance liquid chromatography. Anal Bioanal Chem 408, 5499–5511 (2016). https://doi.org/10.1007/s00216-016-9648-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9648-z

Keywords

Navigation