Skip to main content
Log in

Multi-platform metabolomics assays for human lung lavage fluids in an air pollution exposure study

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Metabolomics protocols are used to comprehensively characterize the metabolite content of biological samples by exploiting cutting-edge analytical platforms, such as gas chromatography (GC) or liquid chromatography (LC) coupled to mass spectrometry (MS) assays, as well as nuclear magnetic resonance (NMR) assays. We have developed novel sample preparation procedures combined with GC-MS, LC-MS, and NMR metabolomics profiling for analyzing bronchial wash (BW) and bronchoalveolar lavage (BAL) fluid from 15 healthy volunteers following exposure to biodiesel exhaust and filtered air. Our aim was to investigate the responsiveness of metabolite profiles in the human lung to air pollution exposure derived from combustion of biofuels, such as rapeseed methyl ester biodiesel, which are increasingly being promoted as alternatives to conventional fossil fuels. Our multi-platform approach enabled us to detect the greatest number of unique metabolites yet reported in BW and BAL fluid (82 in total). All of the metabolomics assays indicated that the metabolite profiles of the BW and BAL fluids differed appreciably, with 46 metabolites showing significantly different levels in the corresponding lung compartments. Furthermore, the GC-MS assay revealed an effect of biodiesel exhaust exposure on the levels of 1-monostearylglycerol, sucrose, inosine, nonanoic acid, and ethanolamine (in BAL) and pentadecanoic acid (in BW), whereas the LC-MS assay indicated a shift in the levels of niacinamide (in BAL). The NMR assay only identified lactic acid (in BW) as being responsive to biodiesel exhaust exposure. Our findings demonstrate that the proposed multi-platform approach is useful for wide metabolomics screening of BW and BAL fluids and can facilitate elucidation of metabolites responsive to biodiesel exhaust exposure.

Graphical abstract illustrating the study workflow. NMR Nuclear Magnetic Resonance, LC-TOFMS Liquid chromatography-Time Of Flight Mass Spectrometry, GC Gas Chromatography-Mass spectrometry

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AUC:

Area under the curve

CV-ANOVA:

Cross-validation-analysis of variance

GC-MS:

Gas chromatography-mass spectrometry

LC-MS:

Liquid chromatography-mass spectrometry

MVA:

Multivariate analysis

NMR:

Nucleic magnetic resonance

OPLS:

Orthogonal projections to latent structures

OPLS-DA:

Orthogonal projections to latent structures-discriminant analysis

PCA:

Principal component analysis

RME:

Rapeseed methyl ester

ROC:

Receiver operating characteristic

RSD:

Relative standard deviations

SMC:

Swedish Metabolomics Centre

UPSC:

Umeå Plant Science Centre

References

  1. Dettmer K, Aronov PA, Hammock BD. Mass spectrometry-based metabolomics. Mass Spectrom Rev. 2007;26(1):51–78.

    Article  CAS  Google Scholar 

  2. Ellis DI et al. Metabolic fingerprinting as a diagnostic tool. Pharmacogenomics. 2007;8(9):1243–66.

    Article  CAS  Google Scholar 

  3. Evans CR et al. Untargeted LC–MS Metabolomics of bronchoalveolar lavage fluid differentiates acute respiratory distress syndrome from health. J Proteome Res. 2014;13(2):640–9.

    Article  CAS  Google Scholar 

  4. Ho WE et al. Metabolomics reveals altered metabolic pathways in experimental asthma. Am J Respir Cell Mol Biol. 2013;48(2):204–11.

    Article  CAS  Google Scholar 

  5. Xu Y-J et al. Recent developments and applications of metabolomics in microbiological investigations. TrAC Trends Anal Chem. 2014;56:37–48.

    Article  CAS  Google Scholar 

  6. Larive CK, Barding GA, Dinges MM. NMR Spectroscopy for metabolomics and metabolic profiling. Anal Chem. 2015;87(1):133–46.

    Article  CAS  Google Scholar 

  7. Karimpour M et al. Postprandial metabolomics: a pilot mass spectrometry and NMR study of the human plasma metabolome in response to a challenge meal. Anal Chim Acta. 2016;908:121–31.

    Article  CAS  Google Scholar 

  8. Walters EH, Ward C, Li X. Bronchoalveolar lavage in asthma research. Respirology. 1996;1(4):233–45.

    Article  CAS  Google Scholar 

  9. Peng J et al. Metabolomic profiling of bronchoalveolar lavage fluids by isotope labeling liquid chromatography mass spectrometry: a promising approach to studying experimental asthma. Metabolomics. 2014;10(6):1305–17.

    Article  CAS  Google Scholar 

  10. Singh C et al. Mini-bronchoalveolar lavage fluid can be used for biomarker identification in patients with lung injury by employing (1)H NMR spectroscopy. Crit Care. 2013;17(2):430.

    Article  Google Scholar 

  11. Connett GJ. Bronchoalveolar lavage. Paediatr Respir Rev. 2000;1(1):52–6.

    CAS  Google Scholar 

  12. Hu JZ et al. Metabolomics in lung inflammation: a high resolution (1)h NMR study of mice exposed to silica dust. Toxicol Mech Methods. 2008;18(5):385–98.

    Article  CAS  Google Scholar 

  13. Ho WE et al. Anti-malarial drug artesunate restores metabolic changes in experimental allergic asthma. Metabolomics. 2014;11(2):380–90.

    Article  Google Scholar 

  14. Wolak JE, Esther CR, O’Connell TM. Metabolomic analysis of bronchoalveolar lavage fluid from cystic fibrosis patients. Biomarkers. 2009;14(1):55–60.

    Article  CAS  Google Scholar 

  15. Fabiano A et al. Metabolomic analysis of bronchoalveolar lavage fluid in preterm infants complicated by respiratory distress syndrome: preliminary results. J Matern Fetal Neonatal Med. 2011;24(S2):55–8.

    Article  Google Scholar 

  16. Julák J et al. Bronchoalveolar lavage examined by solid phase microextraction, gas chromatography–mass spectrometry and selected ion flow tube mass spectrometry. J Microbiol Methods. 2006;65(1):76–86.

    Article  Google Scholar 

  17. Rai R et al. Metabolic profiling in human lung injuries by high-resolution nuclear magnetic resonance spectroscopy of bronchoalveolar lavage fluid (BALF). Metabolomics. 2013;9(3):667–76.

    Article  CAS  Google Scholar 

  18. Ho WE et al. Metabolomics reveals inflammatory-linked pulmonary metabolic alterations in a murine model of house dust mite-induced allergic asthma. J Proteome Res. 2014;13(8):3771–82.

    Article  CAS  Google Scholar 

  19. Larsson N et al. Lipid mediator profiles differ between lung compartments in asthmatic and healthy humans. Eur Respir J. 2014;43(2):453–63.

    Article  CAS  Google Scholar 

  20. Brook RD et al. Insights into the mechanisms and mediators of the effects of air pollution exposure on blood pressure and vascular function in healthy humans. Hypertension. 2009;54(3):659–67.

    Article  CAS  Google Scholar 

  21. Lucking AJ et al. Diesel exhaust inhalation increases thrombus formation in man†. Eur Heart J. 2008;29(24):3043–51.

    Article  CAS  Google Scholar 

  22. Törnqvist H et al. Persistent endothelial dysfunction in humans after diesel exhaust inhalation. Am J Respir Crit Care Med. 2007;176(4):395–400.

    Article  Google Scholar 

  23. Löndahl J et al. Measurement techniques for respiratory tract deposition of airborne nanoparticles: a critical review. J Aerosol Med Pulm Drug Deliv. 2013;27(4):229–54.

    Article  Google Scholar 

  24. Sivagangabalan G et al. The effect of air pollution on spatial dispersion of myocardial repolarization in healthy human volunteers. J Am Coll Cardiol. 2011;57(2):198–206.

    Article  Google Scholar 

  25. Mills NL et al. Diesel exhaust inhalation causes vascular dysfunction and impaired endogenous fibrinolysis. Circulation. 2005;112(25):3930–6.

    Article  CAS  Google Scholar 

  26. Mills NL et al. Ischemic and thrombotic effects of dilute diesel-exhaust inhalation in men with coronary heart disease. N Engl J Med. 2007;357(11):1075–82.

    Article  CAS  Google Scholar 

  27. Lundbäck M et al. Experimental exposure to diesel exhaust increases arterial stiffness in man. Part Fibre Toxicol. 2009;6:7–7.

    Article  Google Scholar 

  28. Barath S et al. Impaired vascular function after exposure to diesel exhaust generated at urban transient running conditions. Part Fibre Toxicol. 2010;7(1):1–11.

    Article  Google Scholar 

  29. Lucking AJ et al. Particle traps prevent adverse vascular and prothrombotic effects of diesel engine exhaust inhalation in men. Circulation. 2011;123(16):1721–8.

    Article  CAS  Google Scholar 

  30. Mills NL et al. Combustion-derived nanoparticulate induces the adverse vascular effects of diesel exhaust inhalation. Eur Heart J. 2011;32(21):2660–71.

    Article  CAS  Google Scholar 

  31. Hoek G et al. Long-term air pollution exposure and cardio- respiratory mortality: a review. Environ Health. 2013;12(1):43.

    Article  CAS  Google Scholar 

  32. Pope CA, Ezzati M, Dockery DW. Fine particulate air pollution and US county life expectancies. N Engl J Med. 2009;360(4):376–86.

    Article  CAS  Google Scholar 

  33. Brook RD et al. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation. 2010;121(21):2331–78.

    Article  CAS  Google Scholar 

  34. Thibodeau LA et al. Air pollution and human health: a review and reanalysis. Environ Health Perspect. 1980;34:165–83.

    Article  CAS  Google Scholar 

  35. Langrish JP et al. Cardiovascular effects of particulate air pollution exposure: time course and underlying mechanisms. J Intern Med. 2012;272(3):224–39.

    Article  CAS  Google Scholar 

  36. Robbins M. Policy: fuelling politics. Nature. 2011;474(7352):S22–4.

    Article  CAS  Google Scholar 

  37. Bünger J et al. Potential hazards associated with combustion of bio-derived versus petroleum-derived diesel fuel. Crit Rev Toxicol. 2012;42(9):732–50.

    Article  Google Scholar 

  38. Salvi S et al. Acute inflammatory responses in the airways and peripheral blood after short-term exposure to diesel exhaust in healthy human volunteers. Am J Respir Crit Care Med. 1999;159(3):702–9.

    Article  CAS  Google Scholar 

  39. A J et al. Extraction and GC/MS analysis of the human blood plasma metabolome. Anal Chem. 2005;77(24):8086–94.

    Article  CAS  Google Scholar 

  40. Hong J-H et al. Characterization of the biochemical effects of naphthalene on the mouse respiratory system using NMR-based metabolomics. J Appl Toxicol. 2014;34(12):1379–88.

    Article  CAS  Google Scholar 

  41. Beckonert O et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc. 2007;2(11):2692–703.

    Article  CAS  Google Scholar 

  42. Trygg J, Wold S. Orthogonal projections to latent structures (O-PLS). J Chemom. 2002;16(3):119–28.

    Article  CAS  Google Scholar 

  43. Eriksson, L., Multi- and Megavariate Data Analysis. 2006: Umetrics AB.

  44. Efron B, Gong G. A leisurely look at the bootstrap, the jackknife, and cross-validation. Am Stat. 1983;37(1):36–48.

    Google Scholar 

  45. Egan JP. Signal detection theory and ROC analysis. Series in Cognition and Perception; New York: Academic; 1975.

    Google Scholar 

  46. Cribbs SK et al. Metabolomics of bronchoalveolar lavage differentiate healthy HIV-1-infected subjects from controls. AIDS Res Hum Retrovir. 2014;30(6):579–85.

    Article  CAS  Google Scholar 

  47. Xia J et al. MetaboAnalyst 2.0—a comprehensive server for metabolomic data analysis. Nucleic Acids Res. 2012;40(Web Server issue):W127–33.

    Article  CAS  Google Scholar 

  48. Want EJ et al. Solvent-dependent metabolite distribution, clustering, and protein extraction for serum profiling with mass spectrometry. Anal Chem. 2006;78(3):743–52.

    Article  CAS  Google Scholar 

  49. Crews B et al. Variability analysis of human plasma and cerebral spinal fluid reveals statistical significance of changes in mass spectrometry-based metabolomics data. Anal Chem. 2009;81(20):8538–44.

    Article  CAS  Google Scholar 

  50. Masson P et al. Optimization and evaluation of metabolite extraction protocols for untargeted metabolic profiling of liver samples by UPLC-MS. Anal Chem. 2010;82(18):7779–86.

    Article  CAS  Google Scholar 

  51. Egan JP. Signal detection theory and roc-analysis. New York: Academic press; 1975.

    Google Scholar 

Download references

Acknowledgments

Financial support from The Swedish Research Council Formas, the Swedish Heart Lung Foundation, Västerbotten County Council (Spjutspetsmedel), AFA-Insurance, and the Kempe Foundation is gratefully acknowledged. The Swedish Metabolomics Centre (www.swedishmetabolomicscentre.se) is acknowledged for outstanding assistance with the analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malin L. Nording.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Izabella Surowiec and Masoumeh Karimpour contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2377 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surowiec, I., Karimpour, M., Gouveia-Figueira, S. et al. Multi-platform metabolomics assays for human lung lavage fluids in an air pollution exposure study. Anal Bioanal Chem 408, 4751–4764 (2016). https://doi.org/10.1007/s00216-016-9566-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9566-0

Keywords

Navigation