Skip to main content
Log in

Concurrent supercritical fluid chromatographic analysis of terpene lactones and ginkgolic acids in Ginkgo biloba extracts and dietary supplements

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Supercritical fluid chromatography was used to resolve and determine ginkgolic acids (GAs) and terpene lactones concurrently in ginkgo plant materials and commercial dietary supplements. Analysis of GAs (C13:0, C15:0, C15:1, and C17:1) was carried out by ESI (−) mass detection. The ESI (−) spectra of GAs simply displayed only the [M-H] pseudo-molecular ions, and selected ion monitoring (SIM) for those ions was used for the quantification. Analysis of terpene lactones (ginkgolides A, B, C, J and bilobalide) was complicated by in-source collision-induced dissociation (IS-CID) in the ESI source. Thus, MS analysis could be influenced by the fragmentation pattern produced by the IS-CID. However, it was established that the fragmentation pattern, measured by ion survival yield (ISY), was independent of analyte concentration or matrix at a fixed cone voltage in the ESI source. Therefore, MS with SIM mode was applicable for the analysis of these analytes. The reported method provided consistent and sensitive analysis for the analytes of interest. The LOQs and LODs were determined to be below 100 and 40 ng/mL for GAs and 1 μg/mL and 400 ng/mL for terpene lactones, respectively. Intra- and inter-day precisions were found to be satisfactory with RSDs being below 5.2 %. Analyte recoveries ranged from 87 to 109 %. The developed method was successfully applied to the analysis of 11 ginkgo plant samples and 8 dietary supplements with an analysis time of less than 12 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. van Beek TA, Montoro P. Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals. J Chromatogr A. 2009;1216(11):2002–32. doi:10.1016/j.chroma.2009.01.013.

    Article  Google Scholar 

  2. Gawron-Gzella A, Marek P, Chanaj J, Matlawska I. Comparative analysis of pharmaceuticals and dietary supplements containing extracts from the leaves of Ginkgo biloba L. Acta Pol Pharm. 2010;67(4):335–43.

    CAS  Google Scholar 

  3. Association for Healthcare Philanthropy AHP. Annual Report. 2011.

  4. Wu Z, Smith JV, Paramasivam V, et al. Ginkgo biloba extract EGb 761 increases stress resistance and extends life span of Caenorhabditis elegans. Cell Mol Biol. 2002;48(6):725–31.

    CAS  Google Scholar 

  5. Guan H, Ren H, Zhang W, et al. Interactions of pharmacokinetic profile of different parts from Ginkgo biloba extract in rats. J Ethnopharmacol. 2014;155(1):758–68.

    Article  CAS  Google Scholar 

  6. Ding S, Dudley E, Plummer S, Tang J, Newton RP, Brenton AG. Fingerprint profile of Ginkgo biloba nutritional supplements by LC/ESI-MS/MS. Phytochemistry. 2008;69(7):1555–64. doi:10.1016/j.phytochem.2008.01.026.

    Article  CAS  Google Scholar 

  7. Ding S, Dudley E, Plummer S, Tang J, Newton RP, Brenton AG. Quantitative determination of major active components in Ginkgo biloba dietary supplements by liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom. 2006;20(18):2753–60. doi:10.1002/rcm.2646.

    Article  CAS  Google Scholar 

  8. Avula B, Sagi S, Gafner S, et al. Identification of Ginkgo biloba supplements adulteration using high performance thin layer chromatography and ultra high performance liquid chromatography-diode array detector-quadrupole time of flight-mass spectrometry. Anal Bioanal Chem. 2015;407(25):7733–46. doi:10.1007/s00216-015-8938-1.

    Article  CAS  Google Scholar 

  9. Pandey R, Chandra P, Arya KR, Kumar B. Development and validation of an ultra high performance liquid chromatography electrospray ionization tandem mass spectrometry method for the simultaneous determination of selected flavonoids in Ginkgo biloba. J Sep Sci. 2014;37(24):3610–8.

    Article  CAS  Google Scholar 

  10. Harnly JM, Luthria D, Chen P. Detection of adulterated Ginkgo biloba supplements using chromatographic and spectral fingerprints. J AOAC Int. 2012;95(6):1579–87. doi:10.5740/jaoacint.12-096.

    Article  CAS  Google Scholar 

  11. Demirezer LO, Buyukkaya A, Ucakturk E, Kuruuzum-Uz A, Guvenalp Z, Palaska E. Adulteration determining of pharmaceutical forms of Ginkgo biloba extracts from different international manufacturers. Rec Nat Prod. 2014;8(4):394–400. 397 pp.

    Google Scholar 

  12. Chen P, Ozcan M, Harnly J. Chromatographic fingerprint analysis for evaluation of Ginkgo biloba products. Anal Bioanal Chem. 2007;389(1):251–61. doi:10.1007/s00216-007-1386-9.

    Article  CAS  Google Scholar 

  13. Xie P, Chen S, Liang Y-Z, Wang X, Tian R, Upton R. Chromatographic fingerprint analysis—a rational approach for quality assessment of traditional Chinese herbal medicine. J Chromatogr A. 2006;1112(1–2):171–80. doi:10.1016/j.chroma.2005.12.091.

    Article  CAS  Google Scholar 

  14. Nakanishi K. Terpene trilactones from Gingko biloba: from ancient times to the 21st century. Bioorg Med Chem. 2005;13(17):4987–5000. doi:10.1016/j.bmc.2005.06.014.

    Article  CAS  Google Scholar 

  15. Andersen NH, Christensen NJ, Lassen PR, et al. Structure and absolute configuration of ginkgolide B characterized by IR- and VCD spectroscopy. Chirality. 2010;22(2):217–23. doi:10.1002/chir.20730.

    CAS  Google Scholar 

  16. Liu X-G, Qi L-W, Fan Z-Y, et al. Accurate analysis of ginkgolides and their hydrolyzed metabolites by analytical supercritical fluid chromatography hybrid tandem mass spectrometry. J Chromatogr A. 2015;1388:251–8. doi:10.1016/j.chroma.2015.02.031.

    Article  CAS  Google Scholar 

  17. Crellin KC, Sible E, Van Antwerp J. Quantification and confirmation of identity of analytes in various matrices with in-source collision-induced dissociation on a single quadrupole mass spectrometer. Int J Mass Spectrom. 2003;222(1–3):281–311. doi:10.1016/S1387-3806(02)01023-0.

    Article  CAS  Google Scholar 

  18. Li X-J, Wang Y-Q, Yang J, et al. Semi-quantitative determination of monocarboxylate forms of ginkgolide B in plasma by UPLC-MS. Anal Bioanal Chem. 2015;407(14):4121–9. doi:10.1007/s00216-015-8628-z.

    Article  CAS  Google Scholar 

  19. Wang M, Zhao J, Avula B, et al. High-resolution gas chromatography/mass spectrometry method for characterization and quantitative analysis of ginkgolic acids in Ginkgo biloba plants, extracts, and dietary supplements. J Agric Food Chem. 2014;62(50):12103–11. doi:10.1021/jf503980f.

    Article  CAS  Google Scholar 

  20. Koch E, Noeldner M, Leuschner J. Reproductive and developmental toxicity of the Ginkgo biloba special extract EGb 761 in mice. Phytomedicine. 2013;21(1):90–7. doi:10.1016/j.phymed.2013.09.004.

    Article  CAS  Google Scholar 

  21. Posadzki P, Watson L, Ernst E. Herb-drug interactions: an overview of systematic reviews. Br J Clin Pharmacol. 2013;75(3):603–18. doi:10.1111/j.1365-2125.2012.04350.x.

    CAS  Google Scholar 

  22. van Beek TA. Ginkgolides and bilobalide: their physical, chromatographic and spectroscopic properties. Bioorg Med Chem. 2005;13(17):5001–12. doi:10.1016/j.bmc.2005.05.056.

    Article  Google Scholar 

  23. van Beek TA. Chemical analysis of Ginkgo biloba leaves and extracts. J Chromatogr A. 2002;967(1):21–55. doi:10.1016/S0021-9673(02)00172-3.

    Article  Google Scholar 

  24. Wang L, Jia Y, Pan Z, Mo W, Hu B. Direct analysis of alkylphenols in Ginkgo biloba leaves by thermochemolysis-gas chromatography/mass spectrometry in the presence of tetramethylammonium hydroxide. J Anal Appl Pyrolysis. 2009;85(1+2):66–71. doi:10.1016/j.jaap.2008.09.014.

    Article  CAS  Google Scholar 

  25. Schoetz K. Quantification of allergenic urushiols in extracts of Ginkgo biloba leaves, in simple one-step extracts and refined manufactured material (EGb 761). Phytochem Anal. 2004;15(1):1–8. doi:10.1002/pca.733.

    Article  CAS  Google Scholar 

  26. Biber A, Koch E. Bioavailability of ginkgolides and bilobalide from extracts of Ginkgo biloba using GC/MS. Planta Med. 1999;65(2):192–3. doi:10.1055/s-2006-960467.

    Article  CAS  Google Scholar 

  27. Fourtillan JB, Brisson AM, Girault J, et al. Pharmacokinetic properties of bilobalide and ginkgolides A and B in healthy subjects after intravenous and oral administration of Ginkgo biloba extract (EGb 761). Therapie. 1995;50(2):137–44.

    CAS  Google Scholar 

  28. Lang Q, Yak HK, Wai CM. Selective dissolution and one step separation of terpene trilactones in ginkgo leaf extracts for GC-FID determination. Talanta. 2001;54(4):673–80. doi:10.1016/S0039-9140(01)00317-4.

    Article  CAS  Google Scholar 

  29. Deng F, Zito SW. Development and validation of a gas chromatographic-mass spectrometric method for simultaneous identification and quantification of marker compounds including bilobalide, ginkgolides and flavonoids in Ginkgo biloba L. extract and pharmaceutical preparations. J Chromatogr A. 2003;986(1):121–7. doi:10.1016/S0021-9673(02)01921-0.

    Article  CAS  Google Scholar 

  30. Krzek J, Czekaj JS, Rzeszutko W, Ekiert RJ. Validation of capillary gas chromatographic method for determination of bilobalide and ginkgolides A, B, C in Ginkgo biloba dry and liquid extracts. Acta Pol Pharm. 2007;64(4):303–10.

    CAS  Google Scholar 

  31. Yao X, Zhou G, Tang Y, et al. UPLC-PDA-TOF/MS coupled with multivariate statistical analysis to rapidly analyze and evaluate Ginkgo biloba leaves from different origin. Drug Test Anal. 2014;6(3):288–94. doi:10.1002/dta.1477.

    Article  CAS  Google Scholar 

  32. Yao X, Zhou G-S, Tang Y-P, Qian Y-F, Guan H-L, Pang H, Zhu S, Mo X, Su S-L, Jin C, Qin Y, Qian D-W, Duan J-A. Simultaneous quantification of flavonol glycosides, terpene lactones, biflavones, proanthocyanidins, and ginkgolic acids in Ginkgo biloba leaves from fruit cultivars by ultrahigh-performance liquid chromatography coupled with triple quadrupole mass spectrometry. BioMed Res Int. 2013; 582591, 582511 pp. doi:10.1155/2013/582591.

  33. Avula B, Wang Y-H, Smillie TJ, Khan IA. Column liquid chromatography/electrospray ionization-time of flight-mass spectrometry and ultraperformance column liquid chromatography/mass spectrometry methods for the determination of ginkgolides and bilobalide in the leaves of Ginkgo biloba and dietary supplements. J AOAC Int. 2009;92(2):645–52.

    CAS  Google Scholar 

  34. van Nederkassel AM, Vijverman V, Massart DL, Vander Heyden Y. Development of a Ginkgo biloba fingerprint chromatogram with UV and evaporative light scattering detection and optimization of the evaporative light scattering detector operating conditions. J Chromatogr A. 2005;1085(2):230–9. doi:10.1016/j.chroma.2005.05.110.

    Article  Google Scholar 

  35. Tang C, Wei X, Yin C. Analysis of ginkgolides and bilobalide in Ginkgo biloba L. extract injections by high-performance liquid chromatography with evaporative light scattering detection. J Pharm Biomed Anal. 2003;33(4):811–7. doi:10.1016/S0731-7085(03)00309-1.

    Article  CAS  Google Scholar 

  36. Ganzera M, Zhao J, Khan IA. Analysis of terpenelactones in Ginkgo biloba by high performance liquid chromatography and evaporative light scattering detection. Chem Pharm Bull. 2001;49(9):1170–3. doi:10.1248/cpb.49.1170.

    Article  CAS  Google Scholar 

  37. Thompson J, Strode III B, Taylor LT, van Beek TA. Supercritical fluid chromatography of ginkgolides A, B, C and J and bilobalide. J Chromatogr A. 1996;738(1):115–22. doi:10.1016/0021-9673(96)00064-7.

    Article  CAS  Google Scholar 

  38. Bicchi C, Balbo C, Rubiolo P. Packed column supercritical fluid chromatography of sesquiterpene lactones with different carbon skeletons. J Chromatogr A. 1997;779(1 + 2):315–20. doi:10.1016/S0021-9673(97)00406-8.

    Article  CAS  Google Scholar 

  39. ICH (2005) Validation of analytical procedures: Text and methodology Q2(R1). ICH Harmonized tripartite guidelines. Geneva, Switzerland

  40. Li R, Shen Y, Zhang X, Ma M, Chen B, van Beek TA. Efficient purification of ginkgolic acids from Ginkgo biloba leaves by selective adsorption on Fe3O4 magnetic nanoparticles. J Nat Prod. 2014;77:571–5.

    Article  CAS  Google Scholar 

  41. Yang X-M, Zhang X-L, Chen Y-C, Liu F. LC method for determination of ginkgolic acids in mice plasma and its application to a pharmacokinetic study. Chromatographia. 2009;69:593–6.

    Article  CAS  Google Scholar 

  42. Li X-J, Yang K, Du G, Xu L, Lan K. Understanding the regioselective hydrolysis of ginkgolide B under physiological environment based on generation, detection, identification, and semi-quantification of the hydrolyzed products. Anal Bioanal Chem. 2015;407(26):7945–56. doi:10.1007/s00216-015-8963-0.

    Article  CAS  Google Scholar 

  43. Sun Y, Li W, Fitzloff JF, van Breemen RB. Liquid chromatography/electrospray tandem mass spectrometry of terpenoid lactones in Ginkgo biloba. J Mass Spectrom. 2005;40(3):373–9.

    Article  CAS  Google Scholar 

  44. Bruno F, Curini R, Di Corcia A, Nazzari M, Samperi R. Method development for measuring trace levels of penicillins in aqueous environmental samples. Rapid Commun Mass Spectrom. 2001;15(16):1391–400. doi:10.1002/rcm.381.

    Article  CAS  Google Scholar 

  45. Kuki A, Irsai I, Nagy L, et al. In-source collision induced dissociation study of polyethers cationized by alkali metal ions. Int J Mass Spectrom. 2013;334:38–42. doi:10.1016/j.ijms.2012.10.004.

    Article  CAS  Google Scholar 

  46. Li LYT, Campbell DA, Bennett PK, Henion J. Acceptance criteria for ultratrace HPLC-tandem mass spectrometry: quantitative and qualitative determination of sulfonylurea herbicides in soil. Anal Chem. 1996;68(19):3397–404. doi:10.1021/AC960375W.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported in part by “Science Based Authentication of Dietary Supplements” funded by the Food and Drug Administration grant number 1U01FD004246-05 and The United States Department of Agriculture, Agricultural Research Service, Specific Cooperative Agreement No. 58-6408-1-603-07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikhlas A. Khan.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Carrell, E.J., Chittiboyina, A.G. et al. Concurrent supercritical fluid chromatographic analysis of terpene lactones and ginkgolic acids in Ginkgo biloba extracts and dietary supplements. Anal Bioanal Chem 408, 4649–4660 (2016). https://doi.org/10.1007/s00216-016-9544-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9544-6

Keywords

Navigation