Analytical and Bioanalytical Chemistry

, Volume 408, Issue 13, pp 3389–3393 | Cite as

Naked-eye detection as a universal approach to lower the limit of detection of enzyme-linked immunoassays

  • Erin F. O’Connor
  • Sureyya Paterson
  • Roberto de la Rica
Rapid Communication


Colorimetric biosensors for the detection of analytes with the naked eye are required in environmental monitoring, point-of-care diagnostics, and analyses in resources constrained settings, where detection instruments may not be available. However, instrument-based detection methods are usually more adequate for detecting small variations in the signal compared to naked-eye detection schemes, and consequently the limit of detection of the latter is usually higher than the former. Here, we demonstrate that the limit of detection of colorimetric enzyme-linked immunoassays can be decreased several orders of magnitude when using naked-eye detection instead of a spectrophotometer for detecting the signal. The key step to lower the limit of detection is adding a small volume of chromogenic substrate during the signal generation step. This generates highly colored solutions that can be easily visualized with the naked eye and recorded with the camera of a mobile phone. The proposed method does not require expensive equipment or complex protocols to enhance the signal, and therefore it is a universal approach to lower the limit of detection of colorimetric enzyme-linked immunoassays.


ELISA Antibody Biosensor Immunosensor Smartphone Naked-eye detection 



This work was supported by a Tom West Analytical Fellowship and an Analytical Chemistry Summer Studentship from the Analytical Chemistry Trust Fund, and by a research grant from Tenovus Scotland.

Compliance with ethical standards

The authors state no potential conflicts of interest.

Supplementary material

216_2016_9453_MOESM1_ESM.pdf (27 kb)
ESM 1 (PDF 26 kb)


  1. 1.
    Paterson S, de la Rica R. Solution-based nanosensors for in-field detection with the naked eye. Analyst. 2015;140:3308–17.CrossRefGoogle Scholar
  2. 2.
    Lee J-S, Han MS, Mirkin CA. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew Chem Int Ed. 2007;46:4093–6.CrossRefGoogle Scholar
  3. 3.
    Bui M-PN, Abbas A. Simple and rapid colorimetric detection of p-nitrophenyl substituent organophosphorous nerve agents. Sensors Actuators B Chem. 2015;207:370–4.CrossRefGoogle Scholar
  4. 4.
    Chuang Y-C, Li J-C, Chen S-H, Liu T-Y, Kuo C-H, Huang W-T, et al. An optical biosensing platform for proteinase activity using gold nanoparticles. Biomaterials. 2010;31:6087–95.CrossRefGoogle Scholar
  5. 5.
    Parolo C, Merkoçi A. Paper-based nanobiosensors for diagnostics. Chem Soc Rev. 2013;42:450–7.CrossRefGoogle Scholar
  6. 6.
    de la Rica R, Stevens MM. Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat Nanotechnol. 2012;7:821–4.CrossRefGoogle Scholar
  7. 7.
    Grudpan K, Kolev SD, Lapanantnopakhun S, McKelvie ID, Wongwilai W. Applications of everyday IT and communications devices in modern analytical chemistry: a review. Talanta. 2015;136:84–94.CrossRefGoogle Scholar
  8. 8.
    Vashist SK, van Oordt T, Schneider EM, Zengerle R, von Stetten F, Luong JHT. A smartphone-based colorimetric reader for bioanalytical applications using the screen-based bottom illumination provided by gadgets. Biosens Bioelectron. 2015;67:248–55.CrossRefGoogle Scholar
  9. 9.
    de la Rica R, Stevens MM. Plasmonic ELISA for the detection of analytes at ultralow concentrations with the naked eye. Nat Protoc. 2013;8:1759–64.CrossRefGoogle Scholar
  10. 10.
    Du J, Jiang L, Shao Q, Liu X, Marks RS, Ma J, et al. Colorimetric detection of mercury ions based on plasmonic nanoparticles. Small. 2013;9:1467–81.CrossRefGoogle Scholar
  11. 11.
    Cecchin D, de la Rica R, Bain RES, Finnis MW, Stevens MM, Battaglia G. Plasmonic ELISA for the detection of gp120 at ultralow concentrations with the naked eye. Nanoscale. 2014;6:9559–62.CrossRefGoogle Scholar
  12. 12.
    Liu D, Yang J, Wang H, Wang Z, Huang X, Wang Z, et al. Glucose oxidase-catalyzed growth of gold nanoparticles enables quantitative detection of attomolar cancer biomarkers. Anal Chem. 2014;86:5800–6.CrossRefGoogle Scholar
  13. 13.
    Bui M-PN, Ahmed S, Abbas A. Single-digit pathogen and attomolar detection with the naked eye using liposome-amplified plasmonic immunoassay. Nano Lett. 2015;15:6239–46.CrossRefGoogle Scholar
  14. 14.
    Yu F, Du Y, Huang X, Ma H, Xu B, Adungo F, et al. Application of recombinant severe fever with thrombocytopenia syndrome virus nucleocapsid protein for the detection of SFTSV-specific human IgG and IgM antibodies by indirect ELISA. Virol J. 2015;12:117.CrossRefGoogle Scholar
  15. 15.
    Talar-wojnarowska R, Gasiorowska A, Olakowski M, Dranka-Bojarowska D, Lampe P, Smigielski J, et al. Utility of serum IgG, IgG4 and carbonic anhydrase II in distinguishing autoimmune pancreatitis from pancreatic cancer and chronic pancreatitis. Adv Med Sci. 2014;59:288–92.CrossRefGoogle Scholar
  16. 16.
    San Miguel JF, Gutiérrez NC, Mateo G, Orfao A. Conventional diagnostics in multiple myeloma. Eur J Cancer. 2006;42:1510–9.CrossRefGoogle Scholar
  17. 17.
    Zhang Q-Y, Chen H, Lin Z, Lin J-M. Comparison of chemiluminescence enzyme immunoassay based on magnetic microparticles with traditional colorimetric ELISA for the detection of serum α-fetoprotein. J Pharm Anal. 2012;2:130–5.CrossRefGoogle Scholar
  18. 18.
    Vashist SK, Czilwik G, Van Oordt T, Von Stetten F, Zengerle R, Marion Schneider E, et al. One-step kinetics-based immunoassay for the highly sensitive detection of C-reactive protein in less than 30 min. Anal Biochem. 2014;456:32–7.CrossRefGoogle Scholar
  19. 19.
    Nie H, Liu S, Yu R, Jiang J. Phospholipid-coated carbon nanotubes as sensitive electrochemical labels with controlled-assembly-mediated signal transduction for magnetic separation immunoassay. Angew Chem Int Ed. 2009;48:9862–6.CrossRefGoogle Scholar
  20. 20.
    Gikunoo E, Abera A, Woldesenbet E. Achieving ultra-low detection limit using nanofiber labels for rapid disease detection. Adv Infect Dis. 2014;04:214–22.CrossRefGoogle Scholar
  21. 21.
    Assays EI, Berg B, Cortazar B, Tseng D, Ozkan H, Feng S, et al. Cellphone-based hand-held microplate reader for point-of-care testing of enzyme-linked immunosorbent assays. ACS Nano. 2015;9:7857–66.CrossRefGoogle Scholar
  22. 22.
    Laksanasopin T, Guo TW, Nayak S, Sridhara AA, Xie S, Olowookere OO, et al. A smartphone dongle for diagnosis of infectious diseases at the point of care. Sci Transl Med. 2015;7:273re1.CrossRefGoogle Scholar
  23. 23.
    Soh JH, Lin Y, Rana S, Ying JY, Stevens MM. Colorimetric detection of small molecules in complex matrixes via target-mediated growth of aptamer-functionalized gold nanoparticles. Anal Chem. 2015;87:7644–52.CrossRefGoogle Scholar
  24. 24.
    Hazarika P, Jickells SM, Wolff K, Russell DA. Imaging of latent fingerprints through the detection of drugs and metabolites. Angew Chem Int Ed. 2008;47:10167–70.CrossRefGoogle Scholar
  25. 25.
    Yetisen AK, Martinez-Hurtado JL, Garcia-Melendrez A, Da Cruz Vasconcellos F, Lowe CR. A smartphone algorithm with inter-phone repeatability for the analysis of colorimetric tests. Sensors Actuators B Chem. 2014;196:156–60.CrossRefGoogle Scholar
  26. 26.
    Masawat P, Harfield A, Namwong A. An iPhone-based digital image colorimeter for detecting tetracycline in milk. Food Chem. 2015;184:23–9.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Erin F. O’Connor
    • 1
  • Sureyya Paterson
    • 1
  • Roberto de la Rica
    • 1
  1. 1.WestCHEM, Department of Pure and Applied ChemistryUniversity of Strathclyde, Technology and Innovation CentreGlasgowUK

Personalised recommendations