Skip to main content
Log in

High precision attachment of silver nanoparticles on AFM tips by dielectrophoresis

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

AFM tips are modified with silver nanoparticles using an AC electrical field. The used technique works with sub-micron precision and also does not require chemical modification of the tip. Based on the electrical parameters applied in the process, particle density and particle position on the apex of the tip can be adjusted. The feasibility of the method is proven by subsequent tip-enhanced Raman spectroscopy (TERS) measurements using the fabricated tips as a measurement probe. Since this modification process itself does not require any lithographic processing, the technique can be easily adapted to modify AFM tips with a variety of nanostructures with pre-defined properties, while being parallelizable for a potential commercial application.

Silver nanoparticles attached to AFM tips using dielectrophoresis. Comparing nanoparticles attached using 1 kHz (left) to 1 MHz (right), SEM and optical (inset) images

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Giessibl FJ. Advances in atomic force microscopy. Rev Mod Phys. 2003;75:949–83. doi:10.1103/RevModPhys.75.949.

    Article  CAS  Google Scholar 

  2. Colton RJ. Procedures in scanning probe microscopies. Chichester : Wiley; 1998.

    Google Scholar 

  3. Gan Y. Invited Review Article: a review of techniques for attaching micro- and nanoparticles to a probe’s tip for surface force and near-field optical measurements. Rev Sci Instrum. 2007;78:081101. doi:10.1063/1.2754076.

    Article  Google Scholar 

  4. Pethig R. Dielectrophoresis: Status of the theory, technology, and applications. Biomicrofluidics. 2010;4:022811. doi:10.1063/1.3456626.

    Article  Google Scholar 

  5. Gascoyne PRC, Vykoukal J. Particle separation by dielectrophoresis. Electrophoresis. 2002;23:1973–83. doi:10.1002/1522-2683(200207)23:13<1973::AID-ELPS1973>3.0.CO;2-1.

    Article  CAS  Google Scholar 

  6. Hermanson KD. Dielectrophoretic assembly of electrically functional microwires from nanoparticle suspensions. Science. 2001;294:1082–6. doi:10.1126/science.1063821.

    Article  CAS  Google Scholar 

  7. Barsotti RJ, Vahey MD, Wartena R, Chiang Y-M, Voldman J, Stellacci F. Assembly of metal nanoparticles into nanogaps. Small. 2007;3:488–99. doi:10.1002/smll.200600334.

    Article  CAS  Google Scholar 

  8. Gierhart BC, Howitt DG, Chen SJ, Smith RL, Collins SD. Frequency dependence of gold nanoparticle superassembly by dielectrophoresis. Langmuir. 2007;23:12450–6. doi:10.1021/la701472y.

    Article  CAS  Google Scholar 

  9. Kretschmer R, Fritzsche W. Pearl chain formation of nanoparticles in microelectrode gaps by dielectrophoresis. Langmuir. 2004;20:11797–801. doi:10.1021/la0482352.

    Article  CAS  Google Scholar 

  10. Raychaudhuri S, Dayeh SA, Wang D, Yu ET. Precise semiconductor nanowire placement through dielectrophoresis. Nano Lett. 2009;9:2260–6. doi:10.1021/nl900423g.

    Article  CAS  Google Scholar 

  11. Leiterer C, Broenstrup G, Jahr N, Urban M, Arnold C, Christiansen S, et al. Applying contact to individual silicon nanowires using a dielectrophoresis (DEP)-based technique. J Nanoparticle Res. 2013;15:1–7. doi:10.1007/s11051-013-1628-z.

    Google Scholar 

  12. Liu Y, Chung J-H, Liu WK, Ruoff RS. Dielectrophoretic assembly of nanowires. J Phys Chem B. 2006;110:14098–106. doi:10.1021/jp061367e.

    Article  CAS  Google Scholar 

  13. Hong SH, Kang MG, Cha H-Y, Son MH, Hwang JS, Lee HJ, et al. Fabrication of one-dimensional devices by a combination of AC dielectrophoresis and electrochemical deposition. Nanotechnology. 2008;19:105305. doi:10.1088/0957-4484/19/10/105305.

    Article  CAS  Google Scholar 

  14. Suehiro J. Fabrication and characterization of nanomaterial-based sensors using dielectrophoresis. Biomicrofluidics. 2010;4:022804. doi:10.1063/1.3430535.

    Article  Google Scholar 

  15. Wei Y, Wei W, Liu L, Fan S. Mounting multi-walled carbon nanotubes on probes by dielectrophoresis. Diam Relat Mater. 2008;17:1877–80. doi:10.1016/j.diamond.2008.04.001.

    Article  CAS  Google Scholar 

  16. Lucci M, Regoliosi P, Reale A, Di Carlo A, Orlanducci S, Tamburri E, et al. Gas sensing using single wall carbon nanotubes ordered with dielectrophoresis. Sensors Actuators B Chem. 2005;111–112:181–6. doi:10.1016/j.snb.2005.06.033.

    Article  Google Scholar 

  17. Li J, Zhang Q, Yang D, Tian J. Fabrication of carbon nanotube field effect transistors by AC dielectrophoresis method. Carbon. 2004;42:2263–7. doi:10.1016/j.carbon.2004.05.002.

    Article  CAS  Google Scholar 

  18. Vijayaraghavan A, Blatt S, Weissenberger D, Oron-Carl M, Hennrich F, Gerthsen D, et al. Ultra-large-scale directed assembly of single-walled carbon nanotube devices. Nano Lett. 2007;7:1556–60. doi:10.1021/nl0703727.

    Article  CAS  Google Scholar 

  19. Krupke R, Hennrich F, Weber HB, Kappes MM, Löhneysen HV. Simultaneous deposition of metallic bundles of single-walled carbon nanotubes using Ac-dielectrophoresis. Nano Lett. 2003;3:1019–23. doi:10.1021/nl0342343.

    Article  CAS  Google Scholar 

  20. Washizu M, Suzuki S, Kurosawa O, Nishizaka T, Shinohara T. Molecular dielectrophoresis of biopolymers. IEEE Trans Ind Appl. 1994;30:835–43.

    Article  CAS  Google Scholar 

  21. Wolff A, Leiterer C, Csaki A, Fritzsche W. Dielectrophoretic manipulation of DNA in microelectrode gaps for single-molecule constructs. Front Biosci. 2008;13:6834–40.

    Article  CAS  Google Scholar 

  22. Wu M-D, Shih W-P, Tsai Y-C, Chen Y-J, Chang S-H, Chang P-Z. Rapid dielectrophoresis assembly of a single carbon nanocoil on AFM Tip apex. IEEE Trans Nanotechnol. 2012;11:328–35. doi:10.1109/TNANO.2011.2174253.

    Article  Google Scholar 

  23. Lee HW, Kim SH, Kwak YK, Han CS. Nanoscale fabrication of a single multiwalled carbon nanotube attached atomic force microscope tip using an electric field. Rev Sci Instrum. 2005;76:046108. doi:10.1063/1.1891445.

    Article  Google Scholar 

  24. Kim J-E, Park J-K, Han C-S. Use of dielectrophoresis in the fabrication of an atomic force microscope tip with a carbon nanotube: experimental investigation. Nanotechnology. 2006;17:2937–41. doi:10.1088/0957-4484/17/12/019.

    Article  CAS  Google Scholar 

  25. Kim J-E, Han C-S. Use of dielectrophoresis in the fabrication of an atomic force microscope tip with a carbon nanotube: a numerical analysis. Nanotechnology. 2005;16:2245–50. doi:10.1088/0957-4484/16/10/046.

    Article  CAS  Google Scholar 

  26. You Y, Purnawirman NA, Hu H, Kasim J, Yang H, Du C, et al. Tip-enhanced Raman spectroscopy using single-crystalline Ag nanowire as tip. J Raman Spectrosc. 2010;41:1156–62. doi:10.1002/jrs.2559.

    Article  CAS  Google Scholar 

  27. Jose J, Kress S, Barik A, Otto LM, Shaver J, Johnson TW, et al. Individual template-stripped conductive gold pyramids for tip-enhanced dielectrophoresis. ACS Photonics. 2014;1:464–70. doi:10.1021/ph500091h.

    Article  CAS  Google Scholar 

  28. Leiterer C, Deckert-Gaudig T, Singh P, Wirth J, Deckert V, Fritzsche W. Dielectrophoretic positioning of single nanoparticles on atomic force microscope tips for tip-enhanced Raman spectroscopy: nanoanalysis. Electrophoresis. 2015;36:1142–8. doi:10.1002/elps.201400530.

    Article  CAS  Google Scholar 

  29. Rasmussen A, Deckert V. Surface- and tip-enhanced Raman scattering of DNA components. J Raman Spectrosc. 2006;37:311–7. doi:10.1002/jrs.1480.

    Article  CAS  Google Scholar 

  30. Deckert-Gaudig T, Deckert V. Ultraflat transparent gold nanoplates-ideal substrates for tip-enhanced raman scattering experiments. Small. 2009;5:432–6. doi:10.1002/smll.200801237.

    Article  CAS  Google Scholar 

  31. van Schrojenstein Lantman EM, Deckert-Gaudig T, Mank AJG, Deckert V, Weckhuysen BM. Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nat Nanotechnol. 2012;7:583–6. doi:10.1038/nnano.2012.131.

    Article  Google Scholar 

  32. Leiterer C, Berg S, Eskelinen A-P, Csaki A, Urban M, Törmä P, et al. Assembling gold nanoparticle chains using an AC electrical field: Electrical detection of organic thiols. Sensors Actuators B Chem. 2013;176:368–73. doi:10.1016/j.snb.2012.09.088.

    Article  CAS  Google Scholar 

  33. Böhme R, Mkandawire M, Krause-Buchholz U, Rösch P, Rödel G, Popp J, et al. Characterizing cytochrome c states—TERS studies of whole mitochondria. Chem Commun. 2011;47:11453. doi:10.1039/c1cc15246g.

    Article  Google Scholar 

  34. Yang Z, Aizpurua J, Xu H. Electromagnetic field enhancement in TERS configurations. J Raman Spectrosc. 2009;40:1343–8. doi:10.1002/jrs.2429.

    Article  CAS  Google Scholar 

  35. Deckert-Gaudig T, Richter M, Knebel D, Jähnke T, Jankowski T, Stock E, et al. A modified transmission tip-enhanced Raman scattering (TERS) setup provides access to opaque samples. Appl Spectrosc. 2014;68:916–9. doi:10.1366/13-07419.

    Article  CAS  Google Scholar 

  36. Singh P, Deckert-Gaudig T, Schneidewind H, Kirsch K, van Schrojenstein Lantman EM, Weckhuysen BM, et al. Differences in single and aggregated nanoparticle plasmon spectroscopy. Phys Chem Chem Phys. 2015;17:2991–5. doi:10.1039/C4CP04850D.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Franka Jahn for SEM and TEM imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Leiterer.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Funding sources

Federal Ministry of Education and Research, Germany (BMBF) and the German Reseach Foundation (DFG) for financial support of the project NAWION (FKZ: 16SV5386K, V4MNI014) and DEP4TERS (FKZ: FR 1348/19-1).

Additional information

Christian Leiterer and Erik Wünsche contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 283 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leiterer, C., Wünsche, E., Singh, P. et al. High precision attachment of silver nanoparticles on AFM tips by dielectrophoresis. Anal Bioanal Chem 408, 3625–3631 (2016). https://doi.org/10.1007/s00216-016-9447-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9447-6

Keywords

Navigation