Skip to main content
Log in

Si@Cu@Au AFM tips for tip-enhanced Raman spectrum

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Tip-enhanced Raman spectrum (TERS) is a scanning probe technique for acquiring chemical information at high spatial resolution and with high chemical sensitivity. The sensitivity of TERS with atomic force microscopy (AFM) system is mainly determined by the metalized tips. Here, we report a fabrication protocol for AFM-TERS tips that incorporate a copper (Cu) primer film between a gold (Au) layer and a Si AFM tips. They were fabricated by coating the Si tip with a 2 nm Cu layer prior to adding a 20 nm Au layer. For top illumination TERS experiments, these tips exhibited superior TERS performance relative to that observed for tips coated with Au only. Samples included graphene, thiophenol and brilliant cresyl blue. The results may derive from the surface roughness of the tip apex and a Cu/Au synergism of local surface plasmon resonances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu Z, Wang X, Dai K, Jin S, Zeng ZC, Zhuang MD, Yang ZL, Wu DY, Ren B, Tian ZQ. Tip-enhanced Raman spectroscopy for investigating adsorbed nonresonant molecules on single-crystal surfaces: tip regeneration, probe molecule, and enhancement effect. J Raman Spectrosc, 2009, 40: 1400–1406

    Article  CAS  Google Scholar 

  2. Zhang R, Zhang Y, Dong ZC, Jiang S, Zhang C, Chen LG, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang JL, Hou JG. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature, 2013, 498: 82–86

    Article  CAS  Google Scholar 

  3. Merlen A, Valmalette JC, Gucciardi PG, Chapelle MLDL, Frigoute A, Ossikovskie R. Depolarization effects in tip-enhanced Raman spectroscopy. J Raman Spectrosc, 2009, 40: 1361–1370

    Article  CAS  Google Scholar 

  4. Lin X, Hasi WLJ, Lou XT, Lin S, Yang F, Jia BS, Cui Y, Ba DX, Lin DY, Lu ZW. Rapid and simple detection of sodium thiocyanate in milk using surface-enhanced Raman spectroscopy based on silver aggregates. J Raman Spectrosc, 2014, 45: 162–167

    Article  CAS  Google Scholar 

  5. Li YH, Xu CH, Han M. Fabrication of silver nanoparticle decorated AFM tips for tip-enhanced Raman scattering applications. Adv Mater Res-Switz, 2013, 643: 195–198

    Article  Google Scholar 

  6. Gouadec G, Colomban P. Raman Spectroscopy of nanomaterials: how spectra relate to disorder, particle size and mechanical properties. Prog Cryst Growth Ch, 2007, 53: 1–56

    Article  CAS  Google Scholar 

  7. Schmid T, Opilik L, Blum C, Zenobi R. Nanoscale chemical imaging using tip-enhanced raman spectroscopy: a critical review. Angew Chem Int Ed, 2013, 52: 5940–5954

    Article  CAS  Google Scholar 

  8. Yeo BS, Schmid T, Zhang W, Zenobi R. Towards rapid nanoscale chemical analysis using tip-enhanced Raman spectroscopy with Ag-coated dielectric tips. Anal Bioanal Chem, 2007, 387: 2655–2662

    Article  CAS  Google Scholar 

  9. Yeo BS, Stadler J, Schmid T, Zenobi R, Zhang WH. Tip-enhanced Raman spectroscopy: its status, challenges and future directions. Chem Phys Lett, 2009, 472: 1–13

    Article  CAS  Google Scholar 

  10. Sinjab F, Lekprasert B, Woolley RAJ, Roberts CJ, Tendler SJB, Notingher I. Near-field Raman spectroscopy of biological nanomaterials by in situ laser-induced synthesis of tip-enhanced Raman spectroscopy tips. Opt Lett, 2012, 37: 2256–2258

    Article  CAS  Google Scholar 

  11. Sackrow M, Stanciu C, Lieb MA, Meixner AJ. Imaging nanometre-sized hot spots on smooth Au films with high-resolution tip-enhanced luminescence and Raman near-field optical microscopy. Chem-PhysChem, 2008, 9: 316–320

    CAS  Google Scholar 

  12. Ossikovski R, Nguyen Q, Picardi G. Simple model for the polarization effects in tip-enhanced Raman spectroscopy. Phys Rev B, 2007, 75: 045412

    Article  Google Scholar 

  13. Bulgarevich DS, Futamata M. Apertureless tip-enhanced Raman microscopy with confocal epi-illumination/collection optics. Appl Spectrosc, 2004, 58: 757–761

    Article  CAS  Google Scholar 

  14. Bailo E, Deckert V. Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method. Angew Chem Int Ed, 2008, 47: 1658–1661

    Article  CAS  Google Scholar 

  15. Zhang MQ, Wang R, Zhu Z. D, Wang J, Tian Q. Experimental research on the spectral response of tips for tip-enhanced Raman spectroscopy. J Optics, 2013, 15: 055006

    Article  Google Scholar 

  16. Asghari-Khiavi M, Wood BR, Hojati-Talemi P, Downes A, McNaughton D, Mechler A. Exploring the origin of tip-enhanced Raman scattering; preparation of efficient TERS probes with high yield. J Raman Spectrosc, 2012, 43: 173–180

    Article  CAS  Google Scholar 

  17. Oguchi M, Mochizuki M, Yano T, Hara M, Hayashi T. Light-transmittable ultrasmooth gold film for gap-mode tip-enhanced Raman scattering spectroscopy. Chem Lett, 2014, 43: 808–810

    Article  CAS  Google Scholar 

  18. Pettinger B, Picardi G, Schuster R, Ertl G. Surface-enhanced and STM-tip-enhanced Raman spectroscopy at metal surfaces. Single Mol, 2002, 3: 285–294

    Article  CAS  Google Scholar 

  19. Schmid T, Sebesta A, Stadler J, Opilik L, Balabin RM, Zenobi R. Tip-enhanced Raman spectroscopy and related techniques in studies of biological materials. Proc Spie, 2010, 7586: 758603

    Article  Google Scholar 

  20. Picardi G, Nguyen Q, Schreiber J, Ossikovski R. Comparative study of atomic force mode and tunneling mode tip-enhanced Raman spectroscopy. Eur Phys J-Appl Phys, 2007, 40: 197–201

    Article  CAS  Google Scholar 

  21. Cui XD, Erni D, Zhang WH, Zenobi R. Highly efficient nano-tips with metal-dielectric coatings for tip-enhanced spectroscopy applications. Chem Phys Lett, 2008, 453: 262–265

    Article  CAS  Google Scholar 

  22. Jiang ZY, Zhang QF, Zong C, Liu BJ, Ren B, Xie ZX, Zheng LS. Cu-Au alloy nanotubes with five-fold twinned structure and their application in surface-enhanced Raman scattering. J Mater Chem, 2012, 22: 18192–18197

    Article  CAS  Google Scholar 

  23. Qi H, Glaser ER, Caldwell JD, Prokes SM, Growth of Vertically Aligned ZnO Nanowire Arrays Using Bilayer. J Nanomater, 2012, 2012: 260687

    Google Scholar 

  24. Thatai S, Khurana P, Boken J, Prasad S, Kumar D. Nanoparticles and core-shell nanocomposite based new generation water remediation materials and analytical techniques: a review. Microchem J, 2014, 116: 62–76

    Article  CAS  Google Scholar 

  25. Stadler J, Oswald B, Schmid T, Zenobi R. Characterizing unusual metal substrates for gap-mode tip-enhanced Raman spectroscopy. J Raman Spectrosc, 2013, 44: 227–233

    Article  CAS  Google Scholar 

  26. Schmid T, Yeo BS, Leong G, Stadler J, Zenobi R. Performing tip-enhanced Raman spectroscopy in liquids. J Raman Spectrosc, 2009, 40: 1392–1399

    Article  CAS  Google Scholar 

  27. Blum C, Schmid T, Opilik L, Weidmann S, Fagerer SR, Zenobi R, Understanding tip-enhanced Raman spectra of biological molecules: a combined Raman, SERS and TERS study. J Raman Spectrosc, 2012, 43: 1895–1904

    Article  CAS  Google Scholar 

  28. Bhaviripudi S, Jia XT, Dresselhaus MS, Kong J. Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Let, 2010, 10: 4128–4133

    Article  CAS  Google Scholar 

  29. Li XS, Cai WW, An JH, Kim S, Nah J, Yang DX, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 2009, 324: 1312–1314

    Article  CAS  Google Scholar 

  30. Blum C, Opilik L, Atkin JM, Braun K, Kammer SB, Kravtsov V, Kumar N, Lemeshko S, Li JF, Luszcz K, Maleki T, Meixner AJ, Minne S, Raschke MB, Ren B, Rogalski J, Roy D, Stephanidis B, Wang X, Zhang D, Zhong JH, Zenobi R. Tip-enhanced Raman spectroscopy: an interlaboratory reproducibility and comparison study. J Raman Spectrosc, 2014, 45: 22–31

    Article  CAS  Google Scholar 

  31. Xu XY, Li SJ, Wu DY, Gu RA. Study on Raman spectra of several conformations of thiophenol on gold. Acta Chim Sinica, 2007, 65: 1095–1100

    CAS  Google Scholar 

  32. Feugmo CGT, Liegeois V. Analyzing the Vibrational Signatures of Thiophenol Adsorbed on Small Gold Clusters by DFT Calculations. ChemPhysChem, 2013, 14: 1633–1645

    Article  Google Scholar 

  33. Stadler J, Schmid T, Zenobi R. Chemical imaging on the nanoscale - top-illumination tip-enhanced Raman spectroscopy. Chimia, 2011, 65: 235–239

    Article  CAS  Google Scholar 

  34. Pettinger B. Single-molecule surface- and tip-enhanced Raman spectroscopy. Mol Phys, 2010, 108: 2039–2059

    Article  CAS  Google Scholar 

  35. Zhang JZ, Noguez C. Plasmonic optical properties and applications of metal nanostructures. Plasmonics, 2008, 3: 127–150

    Article  CAS  Google Scholar 

  36. Pearson A, Bhosale S, Bhargava SK, Bansal V. Combining the UV-switchability of keggin ions with a galvanic replacement process to fabricate TiO2-polyoxometalate-bimetal nanocomposites for improved surface enhanced Raman scattering and solar light photocatalysis. Acs Appl Mater Interf, 2013, 5: 7007–7013

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong Wang or Li-Jun Wan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, P., Li, J., Wang, D. et al. Si@Cu@Au AFM tips for tip-enhanced Raman spectrum. Sci. China Chem. 58, 1494–1500 (2015). https://doi.org/10.1007/s11426-015-5353-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5353-6

Keywords

Navigation