Skip to main content

Advertisement

Log in

Visible and red emissive molecular beacons for optical temperature measurements and quality control in diagnostic assays utilizing temperature-dependent amplification reactions

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Quality control requirements imposed on assays used in clinical diagnostics and point-of-care-diagnostic testing (POCT), utilizing amplification reactions performed at elevated temperatures of 35 to 95 °C are very stringent. As the temperature of a reaction vessel has a large impact on the specificity and sensitivity of the amplification reaction, simple tools for local in situ temperature sensing and monitoring are required for reaction and assay control. We describe here a platform of stem-and-loop structured DNA hairpins (molecular beacons, MBs), absorbing and emitting in the visible and red spectral region, rationally designed for precise temperature measurements in microfluidic assays for POCT, and their application for temperature measurements in a common DNA-based molecular biological assay utilizing thermophilic helicase-dependent amplification (tHDA). Spectroscopic studies of these MBs, rationally designed from DNA sequences of different thermal stabilities, chosen not to interact with the DNA probes applied in the nucleic acid amplification assay, and temperature-dependent fluorescence measurements of MB-assay mixtures revealed the suitability of these MBs for temperature measurements directly in such an assay with a temperature resolution of about 0.5 °C without interferences from assay components. Combining two spectrally distinguishable MBs provides a broader response range and an increase in temperature sensitivity up to 0.1 °C. This approach will find future application for temperature monitoring and quality control in commercialized diagnostics assays using dried reagents and microfluidic chips as well as assays read out with tube and microplate readers and PCR detection systems for temperature measurements in the range of 35 to 95 °C.

Molecular beacon platform for optical temperature measurements and quality control in diagnostic assays

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jaque D, Vetrone F. Luminescence nanothermometry. Nanoscale. 2012;4(15):4301–26. doi:10.1039/c2nr30764b.

    Article  CAS  Google Scholar 

  2. Chin CD, Linder V, Sia SK. Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip. 2012;12(12):2118–34. doi:10.1039/c2lc21204h.

    Article  CAS  Google Scholar 

  3. (CLSI). CaLSI. Quantitative molecular methods for infectious diseases; approved guideline—second edition. CLSI document MM06-A2 (ISBN 1-56238-736-7) 2010;30(22).

  4. Iwamoto T, Sonobe T, Hayashi K. Loop-mediated isothermal amplification for direct detection of Mycobacterium tuberculosis complex, M-avium, and M-intracellulare in sputum samples. J Clin Microbiol. 2003;41(6):2616–22. doi:10.1128/jcm.41.6.2616-2622.2003.

    Article  CAS  Google Scholar 

  5. Vincent M, Xu Y, Kong HM. Helicase-dependent isothermal DNA amplification. EMBO Rep. 2004;5(8):795–800. doi:10.1038/sj.embor.7400200.

    Article  CAS  Google Scholar 

  6. Jeong YJ, Park K, Kim DE. Isothermal DNA amplification in vitro: the helicase-dependent amplification system. Cell Mol Life Sci. 2009;66(20):3325–36. doi:10.1007/s00018-009-0094-3.

    Article  CAS  Google Scholar 

  7. Mahony JB, Petrich A, Smieja M. Molecular diagnosis of respiratory virus infections. Crit Rev Clin Lab Sci. 2011;48(5–6):217–49. doi:10.3109/10408363.2011.640976.

    Article  CAS  Google Scholar 

  8. Scheler O, Glynn B, Kurg A. Nucleic acid detection technologies and marker molecules in bacterial diagnostics. Expert Rev Mol Diagn. 2014;14(4):489–500. doi:10.1586/14737159.2014.908710.

    Article  CAS  Google Scholar 

  9. Lahiri BB, Bagavathiappan S, Jayakumar T, Philip J. Medical applications of infrared thermography: a review. Infrared Phys Technol. 2012;55(4):221–35. doi:10.1016/j.infrared.2012.03.007.

    Article  Google Scholar 

  10. Schäferling M. The art of fluorescence imaging with chemical sensors. Angew Chem Int Ed. 2012;51:2–25. doi:10.1002/anie.201105459.

    Article  Google Scholar 

  11. Lou JF, Finegan TM, Mohsen P, Hatton TA, Laibinis PE. Fluorescence-based thermometry: principles and applications. Rev Anal Chem. 1999;18(4):235–84.

    Article  CAS  Google Scholar 

  12. Ross D, Gaitan M, Locascio LE. Temperature measurements in microfluidic systems using a temperature-dependent fluorescent dye. Anal Chem. 2001;73(17):4117–23.

    Article  CAS  Google Scholar 

  13. Ross D, Locascio LE. Fluorescence thermometry in microfluidics. CP684, temperature: its measurement and control in science and industry. American Institute of Physics; 2003.

  14. Estrada-Perez CE, Hassan YA, Tan S. Experimental characterization of temperature sensitive dyes for laser induced fluorescence thermometry. Rev Sci Instrum. 2011;82(7):074901–7.

    Article  Google Scholar 

  15. Freddi S, Sironi L, D’Antuono R, Morone D, Dona A, Cabrini E, et al. A molecular thermometer for nanoparticles for optical hyperthermia. Nano Lett. 2013;13(5):2004–10. doi:10.1021/nl400129v.

    Article  CAS  Google Scholar 

  16. Homma M, Takei Y, Murata A, Inoue T, Takeoka S. A ratiometric fluorescent molecular probe for visualization of mitochondrial temperature in living cells. Chem Commun. 2015;51(28):6194–7. doi:10.1039/c4cc10349a.

    Article  CAS  Google Scholar 

  17. Arai S, Suzuki M, Park SJ, Yoo JS, Wang L, Kang NY, et al. Mitochondria-targeted fluorescent thermometer monitors intracellular temperature gradient. Chem Commun. 2015;51(38):8044–7. doi:10.1039/c5cc01088h.

    Article  CAS  Google Scholar 

  18. Nurmi J, Wikman T, Karp M, Lovgren T. High-performance real-time quantitative RT-PCR using lanthanide probes and a dual-temperature hybridization assay. Anal Chem. 2002;74(14):3525–32. doi:10.1021/ac020093y.

    Article  CAS  Google Scholar 

  19. Brites CDS, Lima PP, Silva NJO, Millan A, Amaral VS, Palacio F, et al. Lanthanide-based luminescent molecular thermometers. New J Chem. 2011;35(6):1177–83. doi:10.1039/c0nj01010c.

    Article  CAS  Google Scholar 

  20. Borisov SM, Mayr T, Klimant I. Poly(styrene-block-vinylpyrrolidone) beads as a versatile material for simple fabrication of optical nanosensors. Anal Chem. 2008;80(3):573–82. doi:10.1021/ac071374.

    Article  CAS  Google Scholar 

  21. Takei Y, Arai S, Murata A, Takabayashi M, Oyama K, Ishiwata S, et al. A nanoparticle-based ratiometric and self-calibrated fluorescent thermometer for single living cells. ACS Nano. 2014;8(1):198–206. doi:10.1021/nn405456e.

    Article  CAS  Google Scholar 

  22. Natrajan VK, Christensen KT. Two-color laser-induced fluorescent thermometry for microfluidic systems. Meas Sci Technol. 2009;20(1). doi:10.1088/0957-0233/20/1/015401.

  23. Soleilhac A, Dagany X, Dugourd P, Girod M, Antoine R. Correlating droplet size with temperature changes in electrospray source by optical methods. Anal Chem. 2015;87(16):8210–7. doi:10.1021/acs.analchem.5600976.

    Article  CAS  Google Scholar 

  24. Uchiyama S, Tsuji T, Ikado K, Yoshida A, Kawamoto K, Hayashi T, et al. A cationic fluorescent polymeric thermometer for the ratiometric sensing of intracellular temperature. Analyst. 2015;140(13):4498–506. doi:10.1039/c5an00420a.

    Article  CAS  Google Scholar 

  25. Hu XL, Li Y, Liu T, Zhang GY, Liu SY. Intracellular cascade FRET for temperature imaging of living cells with polymeric ratiometric fluorescent thermometers. ACS Appl Mater Interfaces. 2015;7(28):15551–60. doi:10.1021/acsami.5b04025.

    Article  CAS  Google Scholar 

  26. Gota C, Okabe K, Funatsu T, Harada Y, Uchiyama S. Hydrophilic fluorescent nanogel thermometer for intracellular thermometry. J Am Chem Soc. 2009;131(8):2766−+. doi:10.1021/ja807714j.

    Article  Google Scholar 

  27. Liu J, Guo XD, Hu R, Xu J, Wang SQ, Li SY, et al. Intracellular fluorescent temperature probe based on triarylboron substituted poly N-isopropylacrylamide and energy transfer. Anal Chem. 2015;87(7):3694–8. doi:10.1021/acs.analchem.5b00887.

    Article  CAS  Google Scholar 

  28. Shang L, Stockmar F, Azadfar N, Nienhaus GU. Intracellular thermometry by using fluorescent gold nanoclusters. Angew Chem Int Ed. 2013;52(42):11154–7. doi:10.1002/anie.201306366.

    Article  CAS  Google Scholar 

  29. Sedlmeier A, Achatz DE, Fischer LH, Gorris HH, Wolfbeis OS. Photon upconverting nanoparticles for luminescent sensing of temperature. Nanoscale. 2012;4(22):7090–6. doi:10.1039/c2nr32314a.

    Article  CAS  Google Scholar 

  30. Fischer LH, Harms GS, Wolfbeis OS. Upconverting nanoparticles for nanoscale thermometry. Angew Chem Int Ed. 2011;50(20):4546–51. doi:10.1002/anie.201006835.

    Article  CAS  Google Scholar 

  31. Chen R, Ta VD, Xiao F, Zhang QY, Sun HD. Multicolor hybrid upconversion nanoparticles and their improved performance as luminescence temperature sensors due to energy transfer. Small. 2013;9(7):1052–7. doi:10.1002/smll.201202287.

    Article  CAS  Google Scholar 

  32. Okabe K, Inada N, Gota C, Harada Y, Funatsu T, Uchiyama S. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat Commun. 2012; 3. doi:10.1038/ncomms1714.

  33. Tyagi S, Kramer FR. Molecular beacon probes that fluorescence upon hybridization. Nat Biotechnol. 1996;14(3):303–8.

    Article  CAS  Google Scholar 

  34. Raphael MP, Christodoulides JA, Qadri SN, Qadri SA, Miller MM, Kurihara LK, et al. The use of DNA molecular beacons as nanoscale temperature probes for microchip-based biosensors. Biosens Bioelectron. 2008;24(4):888–92. doi:10.1016/j.bios.2008.07.028.

    Article  CAS  Google Scholar 

  35. Ebrahimi S, Akhlaghi Y, Kompany-Zareh M, Rinnan A. Nucleic acid based fluorescent nanothermometers. ACS Nano. 2014;8(10):10372–82. doi:10.1021/nn5036944.

    Article  CAS  Google Scholar 

  36. Ke GL, Wang CM, Ge Y, Zheng NF, Zhu Z, Yang CJ. L-DNA molecular beacon: a safe, stable, and accurate intracellular nano-thermometer for temperature sensing in living cells. J Am Chem Soc. 2012;134(46):18908–11. doi:10.1021/ja3082439.

    Article  CAS  Google Scholar 

  37. Barilero T, Le Saux T, Gosse C, Jullien L. Fluorescent thermometers for dual-emission-wavelength measurements: molecular engineering and application to thermal imaging in a microsystem. Anal Chem. 2009;81(19):7988–8000. doi:10.1021/ac901027f.

    Article  CAS  Google Scholar 

  38. Nellaker C, Wallgren U, Karlsson H. Molecular beacon-based temperature control and automated analyses for improved resolution of melting temperature analysis using SYBR I Green chemistry. Clin Chem. 2007;53(1):98–103. doi:10.1373/clinchem.2006.075184.

    Article  Google Scholar 

  39. Tyagi S, Marras SAE, Kramer FR. Wavelength-shifting molecular beacons. Nat Biotechnol. 2000;18(11):1191–6.

    Article  CAS  Google Scholar 

  40. Stellacci FCAB, Meyer-Friedrichsen T, Wenseleers W, Marder SR, Perry JW. Ultrabright supramolecular beacons based on the self-assembly of two-photon chromophores on metal nanoparticles. J Am Chem Soc. 2003;125(2):328–9.

    Article  CAS  Google Scholar 

  41. Roh SS, Smith LE, Lee JS, Via LE, Barry CE, Alland D et al. Comparative evaluation of sloppy molecular beacon and dual-labeled probe melting temperature assays to identify mutations in mycobacterium tuberculosis resulting in rifampin, fluoroquinolone and aminoglycoside resistance. Plos One. 2015;10(5). doi:10.1371/journal.pone.0126257.

  42. Fair RB, Khlystov A, Tailor TD, Ivanov V, Evans RD, Griffin PB, et al. Chemical and biological applications of digital-microfluidic devices. IEEE Des Test Comput. 2007;24(1):10–24. doi:10.1109/mdt.2007.8.

    Article  Google Scholar 

  43. Würth C, Grabolle M, Pauli J, Spieles M, Resch-Genger U. Relative and absolute determination of fluorescence quantum yields of transparent samples. Nat Protoc. 2013;8(8):1535–50. doi:10.1038/nprot.2013.087.

    Article  Google Scholar 

  44. Wurth C, Lochmann C, Spieles M, Pauli J, Hoffmann K, Schuttrigkeit T, et al. Evaluation of a commercial integrating sphere setup for the determination of absolute photoluminescence quantum yields of dilute dye solutions. Appl Spectrosc. 2010;64(7):733–41.

    Article  Google Scholar 

  45. Markham NR, Zuker M. DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Res. 2005;33:W577–81. doi:10.1093/nar/gki591.

    Article  CAS  Google Scholar 

  46. Resch-Genger U, DeRose PC. Characterization of photoluminescence measuring systems (IUPAC Technical Report). Pure Appl Chem. 2012;84(8):1815–35.

    Article  CAS  Google Scholar 

  47. Lakowicz JR. Principles of fluorescence spectroscopy. 3rd ed. Principles of fluorescence spectroscopy. New York: Springer Science + Business Media, LLC; 2006.

    Book  Google Scholar 

  48. Moreira BG, You Y, Behlke MA, Owczarzy R. Effects of fluorescent dyes, quenchers, and dangling ends on DNA duplex stability. Biochem Biophys Res Commun. 2005;327(2):473–84. doi:10.1016/j.bbrc.2004.12.035.

    Article  CAS  Google Scholar 

  49. Kubin RF, Fletcher AN. Fluorescence quantum yields of some rhodamine dyes. J Lumin. 1982;27:455–62.

    Article  Google Scholar 

  50. Mao DQ, Liu XG, Qiao QL, Yin WT, Zhao M, Cole JM, et al. Coumarin 545: an emission reference dye with a record-low temperature coefficient for ratiometric fluorescence based temperature measurements. Analyst. 2015;140(4):1008–13. doi:10.1039/c4an02075h.

    Article  CAS  Google Scholar 

  51. Fare TL, Coffey EM, Dai H, He YD, Kessler DA, Kilian KA, et al. Effects of atmospheric ozone on microarray data quality. Anal Chem. 2003;75(17):4672–5.

    Article  CAS  Google Scholar 

  52. Piatek AS, Tyagi S, Pol AC, Telenti A, Miller LP, Kramer FR, et al. Molecular beacon sequence analysis for detecting drug resistance in Mycobacterium tuberculosis. Nat Biotechnol. 1998;16(4):359–63. doi:10.1038/nbt0498-359.

    Article  CAS  Google Scholar 

  53. Bonnet G, Krichevsky O, Libchaber A. Kinetics of conformational fluctuations in DNA hairpin-loops. Proc Natl Acad Sci U S A. 1998;95(15):8602–6. doi:10.1073/pnas.95.15.8602.

    Article  CAS  Google Scholar 

  54. Goddard NL, Bonnet G, Krichevsky O, Libchaber A. Sequence dependent rigidity of single stranded DNA. Phys Rev Lett. 2000;85(11):2400–3. doi:10.1103/PhysRevLett.85.2400.

    Article  CAS  Google Scholar 

  55. You Y, Tataurov AV, Owczarzy R. Measuring thermodynamic details of DNA hybridization using fluorescence. Biopolymers. 2011;95(7):472–86. doi:10.1002/bip.21615.

    Article  CAS  Google Scholar 

  56. Lutz S, Weber P, Focke M, Faltin B, Hoffmann J, Muller C, et al. Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA). Lab Chip. 2010;10(7):887–93. doi:10.1039/b921140c.

    Article  CAS  Google Scholar 

  57. Hicke B, Pasko C, Groves B, Ager E, Corpuz M, Frech G, et al. Automated detection of toxigenic clostridium difficile in clinical samples: isothermal tcdB amplification coupled to array-based detection. J Clin Microbiol. 2012;50(8):2681–7. doi:10.1128/jcm.00621-12.

    Article  Google Scholar 

  58. Keller M, Naue J, Zengerle R, von Stetten F, Schmidt U. Automated forensic animal family identification by nested PCR and melt curve analysis on an off-the-shelf thermocycler augmented with a centrifugal microfluidic disk segment. Plos One. 2015;10(7). doi:10.1371/journal.pone.0131845.

  59. Czilwik G, Messinger T, Strohmeier O, Wadle S, von Stetten F, Paust N, et al. Rapid and fully automated bacterial pathogen detection on a centrifugal-microfluidic LabDisk using highly sensitive nested PCR with integrated sample preparation. Lab Chip. 2015;15(18):3749–59. doi:10.1039/c5lc00591d.

    Article  CAS  Google Scholar 

  60. Stumpf F, Schwemmer F, Hutzenlaub T, Baumann D, Strohmeier O, Dingemanns G, et al. LabDisk with complete reagent prestorage for sample-to-answer nucleic acid based detection of respiratory pathogens verified with influenza A H3N2 virus. Lab Chip. 2016;16(1):199–207. doi:10.1039/c5lc00871a.

    Article  CAS  Google Scholar 

  61. Escadafal C, Faye O, Sall AA, Faye O, Weidmann M, Strohmeier O et al. Rapid molecular assays for the detection of yellow fever virus in low-resource settings. PLoS Negl Trop Dis. 2014;8(3). doi:10.1371/journal.pntd.0002730.

Download references

Acknowledgments

We gratefully acknowledge the contributions and help from Dr. W. Bremser for the statistical evaluation of the data, from M. Moser for the figures, and from Dr. D. Geissler for the calculation of the FRET efficiencies as well as the financial support from the Federal Ministry of Education and Research (BMBF; grant 16SV5439 from the project [RES]Check).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ute Resch-Genger.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 782 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fidan, Z., Wende, A. & Resch-Genger, U. Visible and red emissive molecular beacons for optical temperature measurements and quality control in diagnostic assays utilizing temperature-dependent amplification reactions. Anal Bioanal Chem 409, 1519–1529 (2017). https://doi.org/10.1007/s00216-016-0088-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-0088-6

Keywords

Navigation