Skip to main content

Advertisement

Log in

Isothermal DNA amplification in vitro: the helicase-dependent amplification system

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Since the development of polymerase chain reaction, amplification of nucleic acids has emerged as an elemental tool for molecular biology, genomics, and biotechnology. Amplification methods often use temperature cycling to exponentially amplify nucleic acids; however, isothermal amplification methods have also been developed, which do not require heating the double-stranded nucleic acid to dissociate the synthesized products from templates. Among the several methods used for isothermal DNA amplification, the helicase-dependent amplification (HDA) is discussed in this review with an emphasis on the reconstituted DNA replication system. Since DNA helicase can unwind the double-stranded DNA without the need for heating, the HDA system provides a very useful tool to amplify DNA in vitro under isothermal conditions with a simplified reaction scheme. This review describes components and detailed aspects of current HDA systems using Escherichia coli UvrD helicase and T7 bacteriophage gp4 helicase with consideration of the processivity and efficiency of DNA amplification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155:335–350

    Article  PubMed  CAS  Google Scholar 

  2. Mullis KB (1990) The unusual origin of the polymerase chain reaction. Sci Am 262:56–61, 55–64

    Google Scholar 

  3. Mullis KB (1990) Target amplification for DNA analysis by the polymerase chain reaction. Ann Biol Clin (Paris) 48:579–582

    CAS  Google Scholar 

  4. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    Article  PubMed  CAS  Google Scholar 

  5. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 24:476–480

    Google Scholar 

  6. Moore P (2005) PCR: replicating success. Nature 435:235–238

    Article  CAS  Google Scholar 

  7. Brisson-Noel A, Gicquel B, Lecossier D, Levy-Frebault V, Nassif X, Hance AJ (1989) Rapid diagnosis of tuberculosis by amplification of mycobacterial DNA in clinical samples. Lancet 2:1069–1071

    Article  PubMed  CAS  Google Scholar 

  8. Lisby G, Dessau R (1994) Construction of a DNA amplification assay for detection of Legionella species in clinical samples. Eur J Clin Microbiol Infect Dis 13:225–231

    Article  PubMed  CAS  Google Scholar 

  9. Bernet C, Garret M, de Barbeyrac B, Bebear C, Bonnet J (1989) Detection of mycoplasma pneumoniae by using the polymerase chain reaction. J Clin Microbiol 27:2492–2496

    PubMed  CAS  Google Scholar 

  10. Holland SM, Gaydos CA, Quinn TC (1990) Detection and differentiation of Chlamydia trachomatis, Chlamydia psittaci, and Chlamydia pneumoniae by DNA amplification. J Infect Dis 162:984–987

    PubMed  CAS  Google Scholar 

  11. Victor T, du Toit R, van Zyl J, Bester AJ, van Helden PD (1991) Improved method for the routine identification of toxigenic Escherichia coli by DNA amplification of a conserved region of the heat-labile toxin A subunit. J Clin Microbiol 29:158–161

    PubMed  CAS  Google Scholar 

  12. Hoshina S, Kahn SM, Jiang W, Green PH, Neu HC, Chin N, Morotomi M, LoGerfo P, Weinstein IB (1990) Direct detection and amplification of Helicobacter pylori ribosomal 16S gene segments from gastric endoscopic biopsies. Diagn Microbiol Infect Dis 13:473–479

    Article  PubMed  CAS  Google Scholar 

  13. Duggan DB, Ehrlich GD, Davey FP, Kwok S, Sninsky J, Goldberg J, Baltrucki L, Poiesz BJ (1988) HTLV-I-induced lymphoma mimicking Hodgkin’s disease: diagnosis by polymerase chain reaction amplification of specific HTLV-I sequences in tumor DNA. Blood 71:1027–1032

    PubMed  CAS  Google Scholar 

  14. Holodniy M, Katzenstein DA, Sengupta S, Wang AM, Casipit C, Schwartz DH, Konrad M, Groves E, Merigan TC (1991) Detection and quantification of human immunodeficiency virus RNA in patient serum by use of the polymerase chain reaction. J Infect Dis 163:862–866

    PubMed  CAS  Google Scholar 

  15. Wang JY, Lee LN, Lai HC, Hsu HL, Jan IS, Yu CJ, Hsueh PR, Yang PC (2007) Performance assessment of the Capilia TB assay and the BD ProbeTec ET system for rapid culture confirmation of Mycobacterium tuberculosis. Diagn Microbiol Infect Dis 59:395–399

    Article  PubMed  CAS  Google Scholar 

  16. Piersimoni C, Scarparo C, Piccoli P, Rigon A, Ruggiero G, Nista D, Bornigia S (2002) Performance assessment of two commercial amplification assays for direct detection of Mycobacterium tuberculosis complex from respiratory and extrapulmonary specimens. J Clin Microbiol 40:4138–4142

    Article  PubMed  CAS  Google Scholar 

  17. Martro E, Garcia-Sierra N, Gonzalez V, Saludes V, Matas L, Ausina V (2009) Evaluation of an automated nucleic acid extractor for hepatitis C viral load quantification. J Clin Microbiol 47:811–813

    Article  PubMed  Google Scholar 

  18. Chan DJ, Ray JE, McNally L, Batterham M, Smith DE (2008) Correlation between HIV-1 RNA load in blood and seminal plasma depending on antiretroviral treatment status, regimen and penetration of semen by antiretroviral drugs. Curr HIV Res 6:477–484

    Article  PubMed  CAS  Google Scholar 

  19. Robuffo I, Fazii P, Rulli A, Di Nicola M, Toniato E, Di Rienzo M, Cosentino L, Gambi A, Castellani ML, Martinotti S (2008) Upgraded diagnostic value of Gen-Probe PACE 2 assay for detection of Chlamydia trachomatis infection. J Biol Regul Homeost Agents 22:253–261

    PubMed  CAS  Google Scholar 

  20. Levett PN, Brandt K, Olenius K, Brown C, Montgomery K, Horsman GB (2008) Evaluation of three automated nucleic acid amplification systems for detection of Chlamydia trachomatis and Neisseria gonorrhoeae in first-void urine specimens. J Clin Microbiol 46:2109–2111

    Article  PubMed  CAS  Google Scholar 

  21. Andras SC, Power JB, Cocking EC, Davey MR (2001) Strategies for signal amplification in nucleic acid detection. Mol Biotechnol 19:29–44

    Article  PubMed  CAS  Google Scholar 

  22. Vincent M, Xu Y, Kong H (2004) Helicase-dependent isothermal DNA amplification. EMBO Rep 5:795–800

    Article  PubMed  CAS  Google Scholar 

  23. Walker GT, Fraiser MS, Schram JL, Little MC, Nadeau JG, Malinowski DP (1992) Strand displacement amplification—an isothermal, in vitro DNA amplification technique. Nucleic Acids Res 20:1691–1696

    Article  PubMed  CAS  Google Scholar 

  24. Fire A, Xu SQ (1995) Rolling replication of short DNA circles. Proc Natl Acad Sci USA 92:4641–4645

    Article  PubMed  CAS  Google Scholar 

  25. Demidov VV (2002) Rolling-circle amplification in DNA diagnostics: the power of simplicity. Expert Rev Mol Diagn 2:542–548

    Article  PubMed  CAS  Google Scholar 

  26. Runyon GT, Lohman TM (1989) Escherichia coli helicase II (uvrD) protein can completely unwind fully duplex linear and nicked circular DNA. J Biol Chem 264:17502–17512

    PubMed  CAS  Google Scholar 

  27. Abdel-Monem M, Hoffmann-Berling H (1976) Enzymic unwinding of DNA. 1: purification and characterization of a DNA-dependent ATPase from Escherichia coli. Eur J Biochem 65:431–440

    Article  PubMed  CAS  Google Scholar 

  28. Lohman TM, Bjornson KP (1996) Mechanisms of helicase-catalyzed DNA unwinding [Review]. Annu Rev Biochem 65:169–214

    Article  PubMed  CAS  Google Scholar 

  29. Matson SW, Kaiser-Rogers KA (1990) DNA helicases. [Review] [306 refs]. Annu Rev Biochem 59:289–329

    Article  PubMed  CAS  Google Scholar 

  30. Patel SS, Picha KM (2000) Structure and function of hexameric helicases. Annu Rev Biochem 69:651–697

    Article  PubMed  CAS  Google Scholar 

  31. Patel SS, Donmez I (2006) Mechanisms of helicases. J Biol Chem 281:18265–18268

    Article  PubMed  CAS  Google Scholar 

  32. Kadare G, Haenni AL (1997) Virus-encoded RNA helicases. J Virol 71:2583–2590

    PubMed  CAS  Google Scholar 

  33. Borowski P, Lang M, Niebuhr A, Haag A, Schmitz H, Schulze zur Wiesch J, Choe J, Siwecka MA, Kulikowski T (2001) Inhibition of the helicase activity of HCV NTPase/helicase by 1-beta-D-ribofuranosyl-1, 2, 4-triazole-3-carboxamide-5′-triphosphate (ribavirin-TP). Acta Biochim Pol 48:739–744

    PubMed  CAS  Google Scholar 

  34. Borowski P, Lang M, Haag A, Schmitz H, Choe J, Chen HM, Hosmane RS (2002) Characterization of imidazo[4, 5-d]pyridazine nucleosides as modulators of unwinding reaction mediated by West Nile virus nucleoside triphosphatase/helicase: evidence for activity on the level of substrate and/or enzyme. Antimicrob Agents Chemother 46:1231–1239

    Article  PubMed  CAS  Google Scholar 

  35. Borowski P, Lang M, Haag A, Baier A (2007) Tropolone and its derivatives as inhibitors of the helicase activity of hepatitis C virus nucleotide triphosphatase/helicase. Antivir Chem Chemother 18:103–109

    PubMed  CAS  Google Scholar 

  36. Kwong AD, Rao BG, Jeang KT (2005) Viral and cellular RNA helicases as antiviral targets. Nat Rev Drug Discov 4:845–853

    Article  PubMed  CAS  Google Scholar 

  37. Hickman AB, Dyda F (2005) Binding and unwinding: SF3 viral helicases. Curr Opin Struct Biol 15:77–85

    Article  PubMed  CAS  Google Scholar 

  38. Gwack Y, Kim DW, Han JH, Choe J (1997) DNA helicase activity of the hepatitis C virus nonstructural protein 3. Eur J Biochem 250:47–54

    Article  PubMed  CAS  Google Scholar 

  39. Gorbalenya AE, Koonin EV (1993) Helicases: amino acidsequence comparisons and structure-function relationships. Curr Opin Struct Biol 3:419–429

    Article  CAS  Google Scholar 

  40. Jennings TA, Mackintosh SG, Harrison MK, Sikora D, Sikora B, Tackett AJ, Cameron CE, Raney KD (2009) NS3 helicase from the hepatitis C Virus can function as a monomer or oligomer depending on enzyme and substrate concentrations. J Biol Chem 284:4806–4814

    Article  PubMed  CAS  Google Scholar 

  41. Xu HQ, Deprez E, Zhang AH, Tauc P, Ladjimi MM, Brochon JC, Auclair C, Xi XG (2003) The Escherichia coli RecQ helicase functions as a monomer. J Biol Chem 278:34925–34933

    Article  PubMed  CAS  Google Scholar 

  42. Nanduri B, Byrd AK, Eoff RL, Tackett AJ, Raney KD (2002) Pre-steady-state DNA unwinding by bacteriophage T4 Dda helicase reveals a monomeric molecular motor. Proc Natl Acad Sci USA 99:14722–14727

    Article  PubMed  CAS  Google Scholar 

  43. Levin MK, Wang YH, Patel SS (2004) The functional interaction of the hepatitis C virus helicase molecules is responsible for unwinding processivity. J Biol Chem 279:26005–26012

    Article  PubMed  CAS  Google Scholar 

  44. Byrd AK, Raney KD (2005) Increasing the length of the single-stranded overhang enhances unwinding of duplex DNA by bacteriophage T4 Dda helicase. Biochemistry 44:12990–12997

    Article  PubMed  CAS  Google Scholar 

  45. Tackett AJ, Chen Y, Cameron CE, Raney KD (2005) Multiple full-length NS3 molecules are required for optimal unwinding of oligonucleotide DNA in vitro. J Biol Chem 280:10797–10806

    Article  PubMed  CAS  Google Scholar 

  46. Donmez I, Patel SS (2006) Mechanisms of a ring shaped helicase. Nucleic Acids Res 34:4216–4224

    Article  PubMed  CAS  Google Scholar 

  47. Picha KM, Ahnert P, Patel SS (2000) DNA binding in the central channel of bacteriophage T7 helicase-primase is a multistep process; nucleotide hydrolysis is not required. Biochemistry 39:6401–6409

    Article  PubMed  CAS  Google Scholar 

  48. Picha KM, Patel SS (1998) Bacteriophage T7 DNA helicase binds dTTP, forms hexamers, and binds DNA in the absence of Mg2+: the presence of dTTP is sufficient for hexamer formation and DNA binding. J Biol Chem 273:27315–27319

    Article  PubMed  CAS  Google Scholar 

  49. Kornberg A, Baker TA (1992) DNA replication. Freeman, New York

    Google Scholar 

  50. Kornberg A (1988) DNA replication. [Review] [14 refs]. Biochim Biophys Acta 951:235–239

    PubMed  CAS  Google Scholar 

  51. Eckert KA, Kunkel TA (1990) High fidelity DNA synthesis by the Thermus aquaticus DNA polymerase. Nucleic Acids Res 18:3739–3744

    Article  PubMed  CAS  Google Scholar 

  52. Eckert KA, Kunkel TA (1991) DNA polymerase fidelity and the polymerase chain reaction. Genome Res 1:17–24

    Article  CAS  Google Scholar 

  53. Andre P, Kim A, Khrapko K, Thilly WG (1997) Fidelity and mutational spectrum of Pfu DNA polymerase on a human mitochondrial DNA sequence. Genome Res 7:843–852

    PubMed  CAS  Google Scholar 

  54. Cline J, Braman JC, Hogrefe HH (1996) PCR fidelity of pfu DNA polymerase and other thermostable DNA polymerases. Nucleic Acids Res 24:3546–3551

    Article  PubMed  CAS  Google Scholar 

  55. Temin HM, Mizutani S (1970) RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature 226:1211–1213

    Article  PubMed  CAS  Google Scholar 

  56. Baltimore D (1970) RNA-dependent DNA polymerase in virions of RNA tumour viruses. Nature 226:1209–1211

    Article  PubMed  CAS  Google Scholar 

  57. Joyce CM, Grindley ND (1983) Construction of a plasmid that overproduces the large proteolytic fragment (Klenow fragment) of DNA polymerase I of Escherichia coli. Proc Natl Acad Sci USA 80:1830–1834

    Article  PubMed  CAS  Google Scholar 

  58. Jacobsen H, Klenow H, Overgaard-Hansen K (1974) The N-terminal amino-acid sequences of DNA polymerase I from Escherichia coli and of the large and the small fragments obtained by a limited proteolysis. Eur J Biochem 45:623–627

    Article  PubMed  CAS  Google Scholar 

  59. Krieg PA, Melton DA (1984) Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Res 12:7057–7070

    Article  PubMed  CAS  Google Scholar 

  60. Schenborn ET, Mierendorf RC Jr (1985) A novel transcription property of SP6 and T7 RNA polymerases: dependence on template structure. Nucleic Acids Res 13:6223–6236

    Article  PubMed  CAS  Google Scholar 

  61. Lohman TM, Bujalowski W, Overman LB (1988) E. coli single strand binding protein: a new look at helix-destabilizing proteins. Trends Biochem Sci 13:250–255

    PubMed  CAS  Google Scholar 

  62. Lohman TM, Bujalowski W, Overman LB, Wei TF (1988) Interactions of the E. coli single strand binding (SSB) protein with ss nucleic acids: binding mode transitions and equilibrium binding studies. Biochem Pharmacol 37:1781–1782

    Article  PubMed  CAS  Google Scholar 

  63. Lohman TM, Overman LB, Datta S (1986) Salt-dependent changes in the DNA binding co-operativity of Escherichia coli single strand binding protein. J Mol Biol 187:603–615

    Article  PubMed  CAS  Google Scholar 

  64. Weiner JH, Bertsch LL, Kornberg A (1975) The deoxyribonucleic acid unwinding protein of Escherichia coli: properties and functions in replication. J Biol Chem 250:1972–1980

    PubMed  CAS  Google Scholar 

  65. Fanning E, Klimovich V, Nager AR (2006) A dynamic model for replication protein A (RPA) function in DNA processing pathways. Nucleic Acids Res 34:4126–4137

    Article  PubMed  CAS  Google Scholar 

  66. Zou Y, Liu Y, Wu X, Shell SM (2006) Functions of human replication protein A (RPA): from DNA replication to DNA damage and stress responses. J Cell Physiol 208:267–273

    Article  PubMed  CAS  Google Scholar 

  67. Lohman TM, Ferrari ME (1994) Escherichia coli single-stranded DNA-binding protein: multiple DNA-binding modes and co-operativities. Annu Rev Biochem 63:527–570

    PubMed  CAS  Google Scholar 

  68. Shereda RD, Kozlov AG, Lohman TM, Cox MM, Keck JL (2008) SSB as an organizer/mobilizer of genome maintenance complexes. Crit Rev Biochem Mol Biol 43:289–318

    Article  PubMed  CAS  Google Scholar 

  69. Matson SW (1986) Escherichia coli helicase II (urvD gene product) translocates unidirectionally in a 3′–5′ direction. J Biol Chem 261:10169–10175

    PubMed  CAS  Google Scholar 

  70. Lahue EE, Matson SW (1988) Escherichia coli DNA helicase I catalyzes a unidirectional and highly processive unwinding reaction. J Biol Chem 263:3208–3215

    PubMed  CAS  Google Scholar 

  71. Maluf NK, Fischer CJ, Lohman TM (2003) A dimer of Escherichia coli UvrD is the active form of the helicase in vitro. J Mol Biol 325:913–935

    Article  PubMed  CAS  Google Scholar 

  72. An L, Tang W, Ranalli TA, Kim HJ, Wytiaz J, Kong H (2005) Characterization of a thermostable UvrD helicase and its participation in helicase-dependent amplification. J Biol Chem 280:28952–28958

    Article  PubMed  CAS  Google Scholar 

  73. Hall MC, Jordan JR, Matson SW (1998) Evidence for a physical interaction between the Escherichia coli methyl-directed mismatch repair proteins MutL and UvrD. EMBO J 17:1535–1541

    Article  PubMed  CAS  Google Scholar 

  74. Mechanic LE, Frankel BA, Matson SW (2000) Escherichia coli MutL loads DNA helicase II onto DNA. J Biol Chem 275:38337–38346

    Article  PubMed  CAS  Google Scholar 

  75. Matson SW, Robertson AB (2006) The UvrD helicase and its modulation by the mismatch repair protein MutL. Nucleic Acids Res 34:4089–4097

    Article  PubMed  CAS  Google Scholar 

  76. Andresen D, von Nickisch-Rosenegk M, Bier FF (2009) Helicase dependent OnChip-amplification and its use in multiplex pathogen detection. Clin Chim Acta 403:244–248

    Article  PubMed  CAS  Google Scholar 

  77. Gill P, Alvandi AH, Abdul-Tehrani H, Sadeghizadeh M (2008) Colorimetric detection of Helicobacter pylori DNA using isothermal helicase-dependent amplification and gold nanoparticle probes. Diagn Microbiol Infect Dis 62:119–124

    Article  PubMed  CAS  Google Scholar 

  78. Gill P, Amini M, Ghaemi A, Shokouhizadeh L, Abdul-Tehrani H, Karami A, Gilak A (2007) Detection of Helicobacter pylori by enzyme-linked immunosorbent assay of thermophilic helicase-dependent isothermal DNA amplification. Diagn Microbiol Infect Dis 59:243–249

    Article  PubMed  CAS  Google Scholar 

  79. Goldmeyer J, Kong H, Tang W (2007) Development of a novel one-tube isothermal reverse transcription thermophilic helicase-dependent amplification platform for rapid RNA detection. J Mol Diagn 9:639–644

    Article  PubMed  CAS  Google Scholar 

  80. Motre A, Li Y, Kong H (2008) Enhancing helicase-dependent amplification by fusing the helicase with the DNA polymerase. Gene 420:17–22

    Article  PubMed  CAS  Google Scholar 

  81. Xu Y, Kim HJ, Kays A, Rice J, Kong H (2006) Simultaneous amplification and screening of whole plasmids using the T7 bacteriophage replisome. Nucleic Acids Res 34:e98

    Article  PubMed  CAS  Google Scholar 

  82. Dunn JJ, Studier FW (1983) Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J Mol Biol 166:477–535

    Article  PubMed  CAS  Google Scholar 

  83. Richardson CC (1983) Bacteriophage T7: minimal requirements for the replication of a duplex DNA molecule [Review]. Cell 33:315–317

    Article  PubMed  CAS  Google Scholar 

  84. Studier FW (1972) Bacteriophage T7 [Review]. Science 176:367–376

    Article  PubMed  CAS  Google Scholar 

  85. Bernstein JA, Richardson CC (1988) A 7-kDa region of the bacteriophage T7 gene 4 protein is required for primase but not for helicase activity. Proc Natl Acad Sci USA 85:396–400

    Article  PubMed  CAS  Google Scholar 

  86. Bernstein JA, Richardson CC (1989) Characterization of the helicase and primase activities of the 63-kDa component of the bacteriophage T7 gene 4 protein. J Biol Chem 264:13066–13073

    PubMed  CAS  Google Scholar 

  87. Rosenberg AH, Patel SS, Johnson KA, Studier FW (1992) Cloning and expression of gene 4 of bacteriophage T7 and creation and analysis of T7 mutants lacking the 4A primase/helicase or the 4B helicase. J Biol Chem 267:15005–15012

    PubMed  CAS  Google Scholar 

  88. Patel SS, Hingorani MM (1993) Oligomeric structure of bacteriophage T7 DNA primase/helicase proteins. J Biol Chem 268:10668–10675

    PubMed  CAS  Google Scholar 

  89. Hingorani MM, Patel SS (1996) Cooperative interactions of nucleotide ligands are linked to oligomerization and DNA binding in bacteriophage T7 gene 4 helicases. Biochemistry 35:2218–2228

    Article  PubMed  CAS  Google Scholar 

  90. Hingorani MM, Patel SS (1993) Interactions of bacteriophage T7 DNA primase/helicase protein with single-stranded and double-stranded DNAs. Biochemistry 32:12478–12487

    Article  PubMed  CAS  Google Scholar 

  91. Ahnert P, Patel SS (1997) Asymmetric interactions of hexameric bacteriophage T7 DNA helicase with the 5′- and 3′-tails of the forked DNA substrate. J Biol Chem 272:32267–32273

    Article  PubMed  CAS  Google Scholar 

  92. Jeong YJ, Levin MK, Patel SS (2004) The DNA-unwinding mechanism of the ring helicase of bacteriophage T7. Proc Natl Acad Sci USA 101:7264–7269

    Article  PubMed  CAS  Google Scholar 

  93. Matson SW, Richardson CC (1983) DNA-dependent nucleoside 5′-triphosphatase activity of the gene 4 protein of bacteriophage T7. J Biol Chem 258:14009–14016

    PubMed  CAS  Google Scholar 

  94. Ahnert P, Picha KM, Patel SS (2000) A ring-opening mechanism for DNA binding in the central channel of the T7 helicase-primase protein. EMBO J 19:3418–3427

    Article  PubMed  CAS  Google Scholar 

  95. Egelman EH, Yu X, Wild R, Hingorani MM, Patel SS (1995) Bacteriophage T7 helicase/primase proteins form rings around single-stranded DNA that suggest a general structure for hexameric helicases. Proc Natl Acad Sci USA 92:3869–3873

    Article  PubMed  CAS  Google Scholar 

  96. Tabor S, Huber HE, Richardson CC (1987) Escherichia coli thioredoxin confers processivity on the DNA polymerase activity of the gene 5 protein of bacteriophage T7. J Biol Chem 262:16212–16223

    PubMed  CAS  Google Scholar 

  97. Hamdan SM, Johnson DE, Tanner NA, Lee JB, Qimron U, Tabor S, van Oijen AM, Richardson CC (2007) Dynamic DNA helicase-DNA polymerase interactions assure processive replication fork movement. Mol Cell 27:539–549

    Article  PubMed  CAS  Google Scholar 

  98. Kim YT, Tabor S, Bortner C, Griffith JD, Richardson CC (1992) Purification and characterization of the bacteriophage T7 gene 2.5 protein: a single-stranded DNA-binding protein. J Biol Chem 267:15022–15031

    PubMed  CAS  Google Scholar 

  99. Hollis T, Stattel JM, Walther DS, Richardson CC, Ellenberger T (2001) Structure of the gene 2.5 protein, a single-stranded DNA binding protein encoded by bacteriophage T7. Proc Natl Acad Sci USA 98:9557–9562

    Article  PubMed  CAS  Google Scholar 

  100. Nakai H, Richardson CC (1988) Leading and lagging strand synthesis at the replication fork of bacteriophage T7: distinct properties of T7 gene 4 protein as a helicase and primase. J Biol Chem 263:9818–9830

    PubMed  CAS  Google Scholar 

  101. Kim YT, Tabor S, Churchich JE, Richardson CC (1992) Interactions of gene 2.5 protein and DNA polymerase of bacteriophage T7. J Biol Chem 267:15032–15040

    PubMed  CAS  Google Scholar 

  102. Kim DE, Patel SS (2002) T7 DNA helicase: a molecular motor that processively and unidirectionally translocates along single-stranded DNA. J Mol Biol 321:807–819

    Article  PubMed  CAS  Google Scholar 

  103. Stano NM, Jeong YJ, Donmez I, Tummalapalli P, Levin MK, Patel SS (2005) DNA synthesis provides the driving force to accelerate DNA unwinding by a helicase. Nature 435:370–373

    Article  PubMed  CAS  Google Scholar 

  104. Notarnicola SM, Mulcahy HL, Lee J, Richardson CC (1997) The acidic carboxyl terminus of the bacteriophage T7 gene 4 helicase/primase interacts with T7 DNA polymerase. J Biol Chem 272:18425–18433

    Article  PubMed  CAS  Google Scholar 

  105. Li Y, Kim HJ, Zheng C, Chow WH, Lim J, Keenan B, Pan X, Lemieux B, Kong H (2008) Primase-based whole genome amplification. Nucleic Acids Res 36:e79

    Article  PubMed  CAS  Google Scholar 

  106. Kusakabe T, Richardson CC (1997) Gene 4 DNA primase of bacteriophage T7 mediates the annealing and extension of ribo-oligonucleotides at primase recognition sites. J Biol Chem 272:12446–12453

    Article  PubMed  CAS  Google Scholar 

  107. Tabor S, Richardson CC (1981) Template recognition sequence for RNA primer synthesis by gene 4 protein of bacteriophage T7. Proc Natl Acad Sci USA 78:205–209

    Article  PubMed  CAS  Google Scholar 

  108. Benkovic SJ, Valentine AM, Salinas F (2001) Replisome-mediated DNA replication. Annu Rev Biochem 70:181–208

    Article  PubMed  CAS  Google Scholar 

  109. Nossal NG (1992) Protein–protein interactions at a DNA replication fork: bacteriophage T4 as a model [Review]. FASEB J 6:871–878

    PubMed  CAS  Google Scholar 

  110. Young MC, Reddy MK, von Hippel PH (1992) Structure and function of the bacteriophage T4 DNA polymerase holoenzyme. Biochemistry 31:8675–8690

    Article  PubMed  CAS  Google Scholar 

  111. Delagoutte E, von Hippel PH (2001) Molecular mechanisms of the functional coupling of the helicase (gp41) and polymerase (gp43) of bacteriophage T4 within the DNA replication fork. Biochemistry 40:4459–4477

    Article  PubMed  CAS  Google Scholar 

  112. Kim S, Dallmann HG, McHenry CS, Marians KJ (1996) Coupling of a replicative polymerase and helicase: a tau-DnaB interaction mediates rapid replication fork movement. Cell 84:643–650

    Article  PubMed  CAS  Google Scholar 

  113. McHenry CS (2003) Chromosomal replicases as asymmetric dimers: studies of subunit arrangement and functional consequences. Mol Microbiol 49:1157–1165

    Article  PubMed  CAS  Google Scholar 

  114. Kim S, Dallmann HG, McHenry CS, Marians KJ (1996) Tau couples the leading- and lagging-strand polymerases at the Escherichia coli DNA replication fork. J Biol Chem 271:21406–21412

    Article  PubMed  CAS  Google Scholar 

  115. Galletto R, Jezewska MJ, Bujalowski W (2004) Unzipping mechanism of the double-stranded DNA unwinding by a hexameric helicase: quantitative analysis of the rate of the dsDNA unwinding, processivity and kinetic step-size of the Escherichia coli DnaB helicase using rapid quench-flow method. J Mol Biol 343:83–99

    Article  PubMed  CAS  Google Scholar 

  116. Bujalowski W, Jezewska MJ (1995) Interactions of Escherichia coli primary replicative helicase DnaB protein with single-stranded DNA: the nucleic acid does not wrap around the protein hexamer. Biochemistry 34:8513–8519

    Article  PubMed  CAS  Google Scholar 

  117. Barcena M, Ruiz T, Donate LE, Brown SE, Dixon NE, Radermacher M, Carazo JM (2001) The DnaB.DnaC complex: a structure based on dimers assembled around an occluded channel. EMBO J 20:1462–1468

    Article  PubMed  CAS  Google Scholar 

  118. Xi J, Zhang Z, Zhuang Z, Yang J, Spiering MM, Hammes GG, Benkovic SJ (2005) Interaction between the T4 helicase loading protein (gp59) and the DNA polymerase (gp43): unlocking of the gp59-gp43-DNA complex to initiate assembly of a fully functional replisome. Biochemistry 44:7747–7756

    Article  PubMed  CAS  Google Scholar 

  119. Lohman TM, Tomko EJ, Wu CG (2008) Non-hexameric DNA helicases and translocases: mechanisms and regulation. Nat Rev Mol Cell Biol 9:391–401

    Article  PubMed  CAS  Google Scholar 

  120. Zhang W, Dillingham MS, Thomas CD, Allen S, Roberts CJ, Soultanas P (2007) Directional loading and stimulation of PcrA helicase by the replication initiator protein RepD. J Mol Biol 371:336–348

    Article  PubMed  CAS  Google Scholar 

  121. Pang PS, Jankowsky E, Planet PJ, Pyle AM (2002) The hepatitis C viral NS3 protein is a processive DNA helicase with cofactor enhanced RNA unwinding. EMBO J 21:1168–1176

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant (20080401034026) from the BioGreen 21 Program, Rural Development Administration, Republic of Korea, a grant from Korea Health 21 R&D Project, Ministry of Health & Welfare, Republic of Korea (A080123), a grant (10032113) from Industrial Technology Development, Ministry of Knowledge Economy, and a grant from the Korea Science & Engineering Foundation (KOSEF) through a general research grant (R01-2008-000-20301-0). K. Park is supported by the second stage of Brain Korea 21. Y.-J. Jeong was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund) (KRF-2008-313-C00531).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Eun Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, YJ., Park, K. & Kim, DE. Isothermal DNA amplification in vitro: the helicase-dependent amplification system. Cell. Mol. Life Sci. 66, 3325–3336 (2009). https://doi.org/10.1007/s00018-009-0094-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0094-3

Keywords

Navigation