Skip to main content

Advertisement

Log in

Multimodal detection of GM2 and GM3 lipid species in the brain of mucopolysaccharidosis type II mouse by serial imaging mass spectrometry and immunohistochemistry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Mucopolysaccharidosis type II (Hunter’s disease) mouse model (IdS-KO) was investigated by both imaging mass spectrometry (IMS) and immunohistochemistry (IHC) performed on the same tissue sections. For this purpose, IdS-KO mice brain sections were coated with sublimated 1,5-diaminonaphtalene and analyzed by high spatial resolution IMS (5 μm) and anti-GM3 IHC on the same tissue sections to characterize the ganglioside monosialated ganglioside (GM) deposits found in Hunter’s disease. IMS analysis have found that two species of GM3 and GM2 that are only different due to the length of their fatty acid residue (stearic or arachidic residue) were overexpressed in the IdS-KO mice compared to a control mouse. GM3 and GM2 were characterized by on-tissue exact mass and MS/MS compared to a GM3 standard. Realignment of both IMS and IHC data sets further confirmed the observed regioselective signal previously detected by providing direct correlation of the IMS image for the two GM3 overly expressed MS signals with the anti-GM3 IHC image. Furthermore, these regioselective GM MS signals were also found to have highly heterogeneous distributions within the GM3-IHC staining. Some deposits showed high content in GM3 and GM2 stearic species (r = 0.74) and others had more abundant GM3 and GM2 arachidic species (r = 0.76). Same-section analysis of Hunter’s disease mouse model by both high spatial resolution IMS and IHC provides a more in-depth analysis of the composition of the GM aggregates while providing spatial distribution of the observed molecular species.

Ganglioside imaging mass spectrometry followed by immunohistochemistry performed on the same tissue section

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. Neufeld EF, Muenzer J. The mucopolysaccharidoses. In: Scriver CR, editor. The metabolic and molecular bases of inherited disease. New York: McGraw-Hill; 2001. p. 3421–52.

    Google Scholar 

  2. Fratanto JC, Hall CW, Neufeld EF. Defect in Hurlers and Hunters syndromes—faulty degradation of mucopolysaccharide. Proc Natl Acad Sci U S A. 1968;60(2):699. doi:10.1073/pnas.60.2.699.

    Article  Google Scholar 

  3. Walkley SU. Secondary accumulation of gangliosides in lysosomal storage disorders. Semin Cell Dev Biol. 2004;15(4):433–44. doi:10.1016/j.semcdb.2004.03.002.

    Article  CAS  Google Scholar 

  4. Walkley SU, Vanier MT. Secondary lipid accumulation in lysosomal disease. Biochim Biophys Acta (BBA) Mol Cell Res. 2009;1793(4):726–36. doi:10.1016/j.bbamcr.2008.11.014.

    Article  CAS  Google Scholar 

  5. Muenzer J, Wraith JE, Beck M, Giugliani R, Harmatz P, Eng CM, et al. A phase II/III clinical study of enzyme replacement therapy with idursulfase in mucopolysaccharidosis II (Hunter syndrome). Genet Med. 2006;8(8):465–73. doi:10.1097/01.gim.0000232477.37660.fb.

    Article  CAS  Google Scholar 

  6. Wraith JE, Scarpa M, Beck M, Bodamer OA, De Meirleir L, Guffon N, et al. Mucopolysaccharidosis type II (Hunter syndrome): a clinical review and recommendations for treatment in the era of enzyme replacement therapy. Eur J Pediatr. 2008;167(3):267–77. doi:10.1007/s00431-007-0635-4.

    Article  CAS  Google Scholar 

  7. Muenzer J, Fu H. Targeted disruption of the mouse iduronate sulfatase gene. Am J Hum Genet. 1999;65(4):A427–A.

  8. Muenzer J, Lamsa JC, Garcia A, Dacosta J, Garcia J, Treco DA. Enzyme replacement therapy in mucopolysaccharidosis type II (Hunter syndrome): a preliminary report. Acta Paediatr. 2002;91:98–9. doi:10.1080/080352502762458012.

    Article  CAS  Google Scholar 

  9. Jung S-C, Park E-S, Choi EN, Kim CH, Kim SJ, Jin D-K. Characterization of a novel mucopolysaccharidosis type II mouse model and recombinant AAV2/8 vector-mediated gene therapy. Mol Cells. 2010;30(1):13–8. doi:10.1007/s10059-010-0083-2.

    Article  CAS  Google Scholar 

  10. Friso A, Tomanin R, Alba S, Gasparotto N, Puicher EP, Fusco M, et al. Reduction of GAG storage in MPS II mouse model following implantation of encapsulated recombinant myoblasts. J Gene Med. 2005;7(11):1482–91. doi:10.1002/jgm.790.

    Article  CAS  Google Scholar 

  11. McGlynn R, Dobrenis K, Walkley SU. Differential subcellular localization of cholesterol, gangliosides, and glycosaminoglycans in murine models of mucopolysaccharide storage disorders. J Comp Neurol. 2004;480(4):415–26. doi:10.1002/cne.20355.

    Article  CAS  Google Scholar 

  12. Kreutz F, Petry FS, Camassola M, Schein V, Guma FCR, Nardi NB. Alterations of membrane lipids and in gene expression of ganglioside metabolism in different brain structures in a mouse model of mucopolysaccharidosis type I (MPS I). Gene. 2013;527(1):109–14. doi:10.1016/j.gene.2013.06.002.

    Article  CAS  Google Scholar 

  13. Walkley SU. Pathogenic mechanisms in lysosomal disease: a reappraisal of the role of the lysosome. Acta Paediatr. 2007;96:26–32. doi:10.1111/j.1651-2227.2007.00202.x.

    Article  Google Scholar 

  14. Han XL, Gross RW. Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev. 2005;24(3):367–412. doi:10.1002/mas.20023.

    Article  CAS  Google Scholar 

  15. Borrull A, López-Martínez G, Poblet M, Cordero-Otero R, Rozès N. A simple method for the separation and quantification of neutral lipid species using GC-MS. Eur J Lipid Sci Technol. 2015;117(3):274–80. doi:10.1002/ejlt.201400064.

    Article  CAS  Google Scholar 

  16. Krone N, Hughes BA, Lavery GG, Stewart PM, Arlt W, Shackleton CHL. Gas chromatography/mass spectrometry (GC/MS) remains a pre-eminent discovery tool in clinical steroid investigations even in the era of fast liquid chromatography tandem mass spectrometry (LC/MS/MS). J Steroid Biochem Mol Biol. 2010;121(3-5):496–504. doi:10.1016/j.jsbmb.2010.04.010.

    Article  CAS  Google Scholar 

  17. Stoeckli M, Chaurand P, Hallahan DE, Caprioli RM. Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nat Med. 2001;7(4):493–6. doi:10.1038/86573.

    Article  CAS  Google Scholar 

  18. Patterson NH, Doonan RJ, Daskalopoulou SS, Dufresne M, Lenglet S, Montecucco F, et al. Three-dimensional imaging MS of lipids in atherosclerotic plaques: open-source methods for reconstruction and analysis. Proteomics 2016:1642–51. doi:10.1002/pmic.201500490.

  19. Chaurand P, Schwartz SA, Billheimer D, Xu BGJ, Crecelius A, Caprioli RM. Integrating histology and imaging mass spectrometry. Anal Chem. 2004;76(4):1145–55. doi:10.1021/ac0351264.

    Article  CAS  Google Scholar 

  20. Yu RK, Tsai YT, Ariga T, Yanagisawa M. Structures, biosynthesis, and functions of gangliosides—an overview. J Oleo Sci. 2011;60(10):537–44. doi:10.5650/jos.60.537.

    Article  CAS  Google Scholar 

  21. Chen YF, Allegood J, Liu Y, Wang E, Cachon-Gonzalez B, Cox TM, et al. Imaging MALDI mass spectrometry using an oscillating capillary nebulizer matrix coating system and its application to analysis of lipids in brain from a mouse model of Tay-Sachs/Sandhoff disease. Anal Chem. 2008;80(8):2780–8. doi:10.1021/ac702350g.

    Article  CAS  Google Scholar 

  22. Chan K, Lanthier P, Liu X, Sandhu JK, Stanimirovic D, Li JJ. MALDI mass spectrometry imaging of gangliosides in mouse brain using ionic liquid matrix. Anal Chim Acta. 2009;639(1-2):57–61. doi:10.1016/j.aca.2009.02.051.

    Article  CAS  Google Scholar 

  23. Colsch B, Woods AS. Localization and imaging of sialylated glycosphingolipids in brain tissue sections by MALDI mass spectrometry. Glycobiology. 2010;20(6):661–7. doi:10.1093/glycob/cwq031.

    Article  CAS  Google Scholar 

  24. Weishaupt N, Caughlin S, Yeung KKC, Whitehead SN. Differential anatomical expression of ganglioside GM1 species containing d18:1 or d20:1 sphingosine detected by MALDI imaging mass spectrometry in mature rat brain. Front Neuroanat. 2015;9. doi:10.3389/fnana.2015.00155.

  25. Zavalin A, Todd EM, Rawhouser PD, Yang JH, Norris JL, Caprioli RM. Direct imaging of single cells and tissue at sub-cellular spatial resolution using transmission geometry MALDI MS. J Mass Spectrom. 2012;47(11):1473–81. doi:10.1002/jms.3108.

    Article  Google Scholar 

  26. Zavalin A, Yang J, Hayden K, Vestal M, Caprioli RM. Tissue protein imaging at 1 μm laser spot diameter for high spatial resolution and high imaging speed using transmission geometry MALDI TOF MS. Anal Bioanal Chem. 2015;407(8):2337–42. doi:10.1007/s00216-015-8532-6.

    Article  CAS  Google Scholar 

  27. McDonnell LA, Heeren RMA. Imaging mass spectrometry. Mass Spectrom Rev. 2007;26(4):606–43. doi:10.1002/mas.20124.

    Article  CAS  Google Scholar 

  28. Thomas A, Charbonneau JL, Fournaise E, Chaurand P. Sublimation of new matrix candidates for high spatial resolution imaging mass spectrometry of lipids: enhanced information in both positive and negative polarities after 1,5-diaminonapthalene deposition. Anal Chem. 2012;84(4):2048–54. doi:10.1021/ac2033547.

    Article  CAS  Google Scholar 

  29. Vanhoof F, Hers HG. Abnormalities of lysosomal enzymes in mucopolysaccharidoses. Eur J Biochem. 1968;7(1):34.

    Article  CAS  Google Scholar 

  30. Abdelmoula WM, Carreira RJ, Shyti R, Balluff B, van Zeijl RJM, Tolner EA, et al. Automatic registration of mass spectrometry imaging data sets to the Allen Brain Atlas. Anal Chem. 2014;86(8):3947–54. doi:10.1021/ac500148a.

    Article  CAS  Google Scholar 

  31. Heijs B, Abdelmoula WM, Lou S, Briaire-de Bruijn IH, Dijkstra J, Bovée JVMG, et al. Histology-guided high-resolution matrix-assisted laser desorption ionization mass spectrometry imaging. Anal Chem. 2015;87(24):11978–83. doi:10.1021/acs.analchem.5b03610.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canadian Foundation for Innovation (CFI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Chaurand.

Ethics declarations

Conflicts of interests

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1499 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dufresne, M., Guneysu, D., Patterson, N.H. et al. Multimodal detection of GM2 and GM3 lipid species in the brain of mucopolysaccharidosis type II mouse by serial imaging mass spectrometry and immunohistochemistry. Anal Bioanal Chem 409, 1425–1433 (2017). https://doi.org/10.1007/s00216-016-0076-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-0076-x

Keywords

Navigation