Skip to main content
Log in

Biological pH sensing based on the environmentally friendly Raman technique through a polyaniline probe

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The biological pH plays an important role in various cellular processes. In this work, a novel strategy is reported for biological pH sensing by using Raman spectroscopy and polyaniline nanoparticles (PANI NPs) as the pH-sensitive Raman probe. It is found that the Raman spectrum of PANI NPs is strongly dependent on the pH value. The intensities of Raman spectral bands at 1225 and 1454 cm−1 increase obviously with pH value varying from 5.5 to 8.0, which covers the range of regular biological pH variation. The pH-dependent Raman performance of PANI NPs, as well as their robust Raman signals and sensitivities to pH, was well retained after the nanoparticles incorporated into living 4T1 breast adenocarcinoma cells. The data indicate that such PANI NPs can be used as an effective biological pH sensor. Most interestingly, the PANI spherical nanostructures can be acquired by a low-cost, metal-free, and one-pot oxidative polymerization, which gives them excellent biocompatibility for further biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gottlieb RA, Nordberg J, Skowronski E, Babior BM. Apoptosis induced in Jurkat cells by several agents is preceded by intracellular acidification. Proc Natl Acad Sci U S A. 1996;93(2):654–8.

    Article  CAS  Google Scholar 

  2. Speake T, Elliott AC. Modulation of calcium signals by intracellular pH in isolated rat pancreatic acinar cells. J Physiol. 1998;506(2):415–30.

    Article  CAS  Google Scholar 

  3. Chen P, Wang Z, Zong S, Chen H, Zhu D, Zhong Y, et al. A wide range optical pH sensor for living cells using Au@Ag nanoparticles functionalized carbon nanotubes based on SERS signals. Anal Bioanal Chem. 2014;406(25):6337–46.

    Article  CAS  Google Scholar 

  4. Loiselle FB, Casey JR. Measurement of intracellular pH. Methods Mol Biol. 2010;637:311–31.

    Article  CAS  Google Scholar 

  5. Capellini VK, Restini CB, Bendhack LM, Evora PR, Celotto AC. The effect of extracellular pH changes on intracellular pH and nitric oxide concentration in endothelial and smooth muscle cells from rat aorta. PLoS One. 2013;8(5), e62887.

    Article  CAS  Google Scholar 

  6. Zhou J, Fang C, Chang T, Liu X, Shangguan D. A pH sensitive ratiometric fluorophore and its application for monitoring the intracellular and extracellular pHs simultaneously. J Mater Chem B. 2013;1(5):661–7.

    Article  CAS  Google Scholar 

  7. Li P, Xiao H, Cheng Y, Zhang W, Huang F, Zhang W, et al. A near-infrared-emitting fluorescent probe for monitoring mitochondrial pH. Chem Commun. 2014;50(54):7184–7.

    Article  CAS  Google Scholar 

  8. Chen Z, Tabakman SM, Goodwin AP, Kattah MG, Daranciang D, Wang X, et al. Protein microarrays with carbon nanotubes as multicolor Raman labels. Nat Biotechnol. 2008;26(11):1285–92.

    Article  CAS  Google Scholar 

  9. Vendrell M, Maiti KK, Dhaliwal K, Chang YT. Surface-enhanced Raman scattering in cancer detection and imaging. Trends Biotechnol. 2013;31(4):249–57.

    Article  CAS  Google Scholar 

  10. Wang Z, Bonoiu A, Samoc M, Cui Y, Prasad PN. Biological pH sensing based on surface enhanced Raman scattering through a 2-aminothiophenol-silver probe. Biosens Bioelectron. 2008;23(6):886–91.

    Article  CAS  Google Scholar 

  11. Talley CE, Jusinski L, Hollars CW, Lane SM, Huser T. Intracellular pH sensors based on surface-enhanced Raman scattering. Anal Chem. 2004;76(23):7064–8.

    Article  CAS  Google Scholar 

  12. Zong S, Wang Z, Yang J, Cui Y. Intracellular pH sensing using p-aminothiophenol functionalized gold nanorods with low cytotoxicity. Anal Chem. 2011;83(11):4178–83.

    Article  CAS  Google Scholar 

  13. Jaworska A, Jamieson LE, Malek K, Campbell CJ, Choo J, Chlopicki S, et al. SERS-based monitoring of the intracellular pH in endothelial cells: the influence of the extracellular environment and tumour necrosis factor-alpha. Analyst. 2015;140(7):2321–9.

    Article  CAS  Google Scholar 

  14. Alkilany AM, Nagaria PK, Hexel CR, Shaw TJ, Murphy CJ, Wyatt MD. Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small. 2009;5(6):701–8.

    Article  CAS  Google Scholar 

  15. Qiu Y, Liu Y, Wang L, Xu L, Bai R, Ji Y, et al. Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials. 2010;31(30):7606–19.

    Article  CAS  Google Scholar 

  16. Nikoobakht B, El-Sayed MA. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater. 2003;15(10):1957–62.

    Article  CAS  Google Scholar 

  17. Jana NR, Gearheart L, Murphy CJ. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv Mater. 2001;13(18):1389.

    Article  CAS  Google Scholar 

  18. Smilowitz L, Hays A, Heeger A, Wang G, Bowers J. Time‐resolved photoluminescence from poly [2‐methoxy, 5‐(2′‐ethyl‐hexyloxy)‐p‐phenylene‐vinylene]: solutions, gels, films, and blends. J Chem Phys. 1993;98(8):6504–9.

    Article  CAS  Google Scholar 

  19. Dhand C, Das M, Datta M, Malhotra BD. Recent advances in polyaniline based biosensors. Biosens Bioelectron. 2011;26(6):2811–21.

    Article  CAS  Google Scholar 

  20. Kang Y, Kim SK, Lee C. Doping of polyaniline by thermal acid–base exchange reaction. Mater Sci Eng C. 2004;24(1):39–41.

    Article  Google Scholar 

  21. Bhadra S, Khastgir D, Singha NK, Lee JH. Progress in preparation, processing and applications of polyaniline. Prog Polym Sci. 2009;34(8):783–810.

    Article  CAS  Google Scholar 

  22. Heeger AJ. Semiconducting and metallic polymers: the fourth generation of polymeric materials. J Phys Chem B. 2001;105(36):8475–91.

    Article  CAS  Google Scholar 

  23. Lee T, Bang D, Park Y, Kim SH, Choi J, Park J, et al. Gadolinium-enriched polyaniline particles (GPAPs) for simultaneous diagnostic imaging and localized photothermal therapy of epithelial cancer. Adv Healthc Mater. 2014;3(9):1408–14.

    Article  CAS  Google Scholar 

  24. Zhou J, Lu Z, Zhu X, Wang X, Liao Y, Ma Z, et al. NIR photothermal therapy using polyaniline nanoparticles. Biomaterials. 2013;34(37):9584–92.

    Article  CAS  Google Scholar 

  25. Yang J, Choi J, Bang D, Kim E, Lim EK, Park H, et al. Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells. Angew Chem Int Ed Engl. 2011;50(2):441–4.

    Article  CAS  Google Scholar 

  26. Lindfors T, Ivaska A. Raman based pH measurements with polyaniline. J Electroanal Chem. 2005;580(2):320–9.

    Article  CAS  Google Scholar 

  27. Wallace GG, Spinks GM, Kane-Maguire L, Teasdale PR. Conductive electroactive polymers: intelligent polymer systems. 3rd ed. Boca Raton: Crc Press; 2008.

    Book  Google Scholar 

  28. Quillard S, Berrada K, Louarn G, Lefrant S, Lapkowski M, Pron A. In situ Raman spectroscopic studies of the electrochemical behavior of polyaniline. New J Chem. 1995;19(4):365–74.

    CAS  Google Scholar 

  29. Bartonek M, Sariciftci N, Kuzmany H. Resonance Raman spectroscopy of the emeraldine insulator-to-metal phase transition. Synth Met. 1990;36(1):83–93.

    Article  CAS  Google Scholar 

  30. Abel SB, Molina MA, Rivarola CR, Kogan MJ, Barbero CA. Smart polyaniline nanoparticles with thermal and photothermal sensitivity. Nanotechnology. 2014;25(49):495602.

    Article  Google Scholar 

  31. Colomban P, Folch S, Gruger A. Vibrational study of short-range order and structure of polyaniline bases and salts. Macromolecules. 1999;32(9):3080–92.

    Article  CAS  Google Scholar 

  32. Folch S, Régis A, Gruger A, Colomban P. Chain length effect on intrachain electronic excitation and interchain coupling in poly- and oligo-anilines. Synth Met. 2000;110(3):219–27.

    Article  CAS  Google Scholar 

  33. Trchová M, Morávková Z, Bláha M, Stejskal J. Raman spectroscopy of polyaniline and oligoaniline thin films. Electrochim Acta. 2014;122:28–38.

    Article  Google Scholar 

  34. Wan M. Absorption spectra of thin film of polyaniline. J Polym Sci, Polym Chem. 1992;30(4):543–9.

    Article  CAS  Google Scholar 

  35. Berrada K, Quillard S, Louam G, Lefrant S. Polyanilines and substituted polyanilines: a comparative study of the Raman spectra of leucoemeraldine, emeraldine and pernigraniline. Synth Met. 1995;69(1):201–4.

    Article  CAS  Google Scholar 

  36. Laska J. Protonation/plasticization competitions in polyaniline doped with bis (2-ethylhexyl) hydrogen phosphate. Synth Met. 2002;129(3):229–33.

    Article  CAS  Google Scholar 

  37. Zhang J, Liu C, Shi G. Raman spectroscopic study on the structural changes of polyaniline during heating and cooling processes. J Appl Polym Sci. 2005;96(3):732–9.

    Article  CAS  Google Scholar 

  38. Jin Z, Su Y, Duan Y. An improved optical pH sensor based on polyaniline. Sensors Actuators B Chem. 2000;71(1):118–22.

    Article  CAS  Google Scholar 

  39. Tannock IF, Rotin D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res. 1989;49(16):4373–84.

    CAS  Google Scholar 

  40. Lawson LS, Chan JW, Huser T. A highly sensitive nanoscale pH-sensor using Au nanoparticles linked by a multifunctional Raman-active reporter molecule. Nanoscale. 2014;6(14):7971–80.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61335011, 61675072, 61275187, and 21505047), the Natural Science Foundation of Guangdong Province of China (2014A030310306 and 2014A030311024), the Science and Technology Project of Guangdong Province of China (2012A080203008), the Science and Technology Innovation Project of the Education Department of Guangdong Province of China (2013KJCX0052), and the Scientific Research Cultivation Fund for Young Teachers of South China Normal University (14KJ10).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiming Liu or Zhouyi Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Liu, Z., Su, C. et al. Biological pH sensing based on the environmentally friendly Raman technique through a polyaniline probe. Anal Bioanal Chem 409, 1387–1394 (2017). https://doi.org/10.1007/s00216-016-0063-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-0063-2

Keywords

Navigation