Skip to main content

Advertisement

Log in

A facile and dynamic assay for the detection of peptide aggregation

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We report on a facile method to detect the aggregation and co-aggregation of peptides by tryptophan fluorescence spectroscopy. Peptide aggregates (PAs) play a pivotal role in neurodegenerative diseases, such as Alzheimer’s and Parkinson’s. The detection of the formation of aggregates, especially in the early stage, will facilitate the diagnosis and treatment of the associated disease. In this study, by choosing a tryptophan-containing peptide of EP2, we investigated its fluorescence spectroscopic characteristics in the process of PAs. The results showed that the intensity of emission spectra was significantly enhanced with the formation of PAs within 48 h. In addition, by employing EP2 as a fluorescence probe, we found that EP2 was able to effectively monitor the aggregation of other peptides/proteins that are otherwise difficult to detect with conventional approach. Thus, these preliminary data provide a promising diagnostic tool to detect the formation of PAs.

A rapid and facil method for detection of peptide aggregation was provided by using an amyloidforming peptide EP2 as a “fluorescence probe”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chiti F, Dobson CM. Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem. 2006;75:333–66.

    Article  CAS  Google Scholar 

  2. Yang CI, Tsai BN, Huang SJ, Wang TY, Tai HC, Chan JC. Aggregation of beta-amyloid peptides proximal to zwitterionic lipid bilayers. Chem Asian J. 2015;10(9):1967–71.

    Article  CAS  Google Scholar 

  3. Collier JH, Rudra JS, Gasiorowski JZ, Jung JP. Multi-component extracellular matrices based on peptide self-assembly. Chem Soc Rev. 2010;39(9):3413–24.

    Article  CAS  Google Scholar 

  4. Wen Y, Liu W, Bagia C, Zhang S, Bai M, Janjic JM, et al. Antibody-functionalized peptidic membranes for neutralization of allogeneic skin antigen-presenting cells. Acta Biomater. 2014;10(11):4759–67.

    Article  CAS  Google Scholar 

  5. Picou R, Moses JP, Wellman AD, Kheterpal I, Gilman SD. Analysis of monomeric Abeta (1–40) peptide by capillary electrophoresis. Analyst. 2010;135(7):1631–5.

    Article  CAS  Google Scholar 

  6. Wen Y, Roudebush SL, Buckholtz GA, Goehring TR, Giannoukakis N, Gawalt ES, et al. Coassembly of amphiphilic peptide EAK16-II with histidinylated analogues and implications for functionalization of β-sheet fibrils in vivo. Biomaterials. 2014;35(19):5196–205.

    Article  CAS  Google Scholar 

  7. Zheng Y, Wen Y, George AM, Steinbach AM, Phillips BE, Giannoukakis N, et al. A peptide-based material platform for displaying antibodies to engage T cells. Biomaterials. 2011;32(1):249–57.

    Article  CAS  Google Scholar 

  8. Hamley IW. Peptide fibrillization. Angew Chem Int Ed Engl. 2007;46(43):8128–47.

    Article  CAS  Google Scholar 

  9. Maji SK, Perrin MH, Sawaya MR, Jessberger S, Vadodaria K, Rissman RA, et al. Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science (New York, NY). 2009;325(5938):328–32.

    Article  CAS  Google Scholar 

  10. Wen Y, Kolonich HR, Kruszewski KM, Giannoukakis N, Gawalt ES, Meng WS. Retaining antibodies in tumors with a self-assembling injectable system. Mol Pharm. 2013;10(3):1035–44.

    Article  CAS  Google Scholar 

  11. Saunders MJ, Liu W, Szent-Gyorgyi C, Wen Y, Drennen Z, Waggoner AS, et al. Engineering fluorogen activating proteins into self-assembling materials. Bioconjug Chem. 2013;24(5):803–10.

    Article  CAS  Google Scholar 

  12. Munch J, Rucker E, Standker L, Adermann K, Goffinet C, Schindler M, et al. Semen-derived amyloid fibrils drastically enhance HIV infection. Cell. 2007;131(6):1059–71.

    Article  Google Scholar 

  13. Pawar AP, Dubay KF, Zurdo J, Chiti F, Vendruscolo M, Dobson CM. Prediction of "aggregation-prone" and "aggregation-susceptible" regions in proteins associated with neurodegenerative diseases. J Mol Biol. 2005;350(2):379–92.

    Article  CAS  Google Scholar 

  14. Oskarsson ME, Paulsson JF, Schultz SW, Ingelsson M, Westermark P, Westermark GT. In vivo seeding and cross-seeding of localized amyloidosis: a molecular link between type 2 diabetes and Alzheimer disease. Am J Pathol. 2015;185(3):834–46.

    Article  CAS  Google Scholar 

  15. Tan S, Li L, Lu L, Pan C, Lu H, Oksov Y, et al. Peptides derived from HIV-1 gp120 co-receptor binding domain form amyloid fibrils and enhance HIV-1 infection. FEBS Lett. 2014;588(9):1515–22.

    Article  CAS  Google Scholar 

  16. Tan S, Lu L, Li L, Liu J, Oksov Y, Lu H, et al. Polyanionic candidate microbicides accelerate the formation of semen-derived amyloid fibrils to enhance HIV-1 infection. PLoS One. 2013;8(3):e59777.

    Article  CAS  Google Scholar 

  17. Jia M, Yi H, Chang M, Cao X, Li L, Zhou Z, et al. Fluorescence kinetics of Trp-Trp dipeptide and its derivatives in water via ultrafast fluorescence spectroscopy. J Photochem Photobiol B Biol. 2015;149:243–8.

    Article  CAS  Google Scholar 

  18. Gakamsky DM, Dhillon B, Babraj J, Shelton M, Smith SD. Exploring the possibility of early cataract diagnostics based on tryptophan fluorescence. J R Soc Interface. 2011;8:1616–21.

    Article  CAS  Google Scholar 

  19. Naik A, Kambli P, Borana M, Mohanpuria N, Ahmad B, Kelkar-Mane V, et al. Attenuation of lysozyme amyloid cytotoxicity by SPION-mediated modulation of amyloid aggregation. Int J Biol Macromol. 2015;74:439–46.

    Article  CAS  Google Scholar 

  20. Verma M, Vats A, Taneja V. Toxic species in amyloid disorders: oligomers or mature fibrils. Ann Indian Acad Neurol. 2015;18(2):138–45.

    Article  Google Scholar 

  21. Easterhoff D, DiMaio JT, Doran TM, Dewhurst S, Nilsson BL. Enhancement of HIV-1 infectivity by simple, self-assembling modular peptides. Biophys J. 2011;100(5):1325–34.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Nature Science Foundation of China (No. 31370781) to Dr, Shuwen Liu, and  the start-up funding from Southern Medical University (No. B1040903) and Science and Technology Department of Guangdong Province (No. 2014A020210014 and 2015A020211010) to Dr. Jian He.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian He.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, D., Ren, R., Tan, Q. et al. A facile and dynamic assay for the detection of peptide aggregation. Anal Bioanal Chem 408, 1609–1614 (2016). https://doi.org/10.1007/s00216-015-9271-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9271-4

Keywords

Navigation