Skip to main content

Advertisement

Log in

Fluorescence-based techniques for the detection of the oligomeric status of proteins: implication in amyloidogenic diseases

  • Review
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Intrinsically disordered proteins (IDPs) have captured attention in the last couple of decades due to their functional roles despite a lack of specific structure. Moreover, these proteins are found to be highly aggregation prone depending on the mutational and environmental changes to which they are subjected. The aggregation of such proteins either in the intracellular context or extracellular matrix is associated with several adverse pathophysiological conditions such as Alzheimer’s, Parkinson’s, and Huntington’s diseases, Spinocerebellar ataxia, and Type-II diabetes. Interestingly, it has been noted that the smaller oligomers formed by IDPs are more toxic to cells than their larger aggregates. This necessitates the development of techniques that can detect the smaller oligomers formed by IDPs for diagnosis of such diseases during their early onset. Fluorescence-based spectroscopic and microscopic techniques are highly effective as compared to other techniques for the evaluation of protein oligomerization, organization, and dynamics. In this review, we discuss several fluorescence-based techniques including fluorescence/Förster resonance energy transfer (FRET), homo-FRET, fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS), fluorescence lifetime imaging (FLIM), and photobleaching image correlation spectroscopy (pbICS) that are routinely used to identify protein oligomers in extracellular and intracellular matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

The figure has been adapted and modified from reference (Takahashi et al. 2007) with permission

Fig. 4

The figure has been adapted from reference (Roberti et al. 2011) with permission

Fig. 5
Fig. 6

The figure has been adapted from reference (Nath et al. 2010) with permission

Fig. 7

The figure has been adapted from reference (Takahashi et al. 2007) with permission

Fig. 8
Fig. 9

The figure has been adapted and modified from reference (Seki et al. 2009) with permission

Fig. 10

The figure has been adapted from reference (Roberti et al. 2011) with permission

Fig. 11

The figure has been adapted from reference (Bonfanti et al. 2019) with permission

Fig. 12

The figure has been adapted and modified from reference (Klucken et al. 2006) with permission

Fig. 13

The figure has been adapted and modified from reference (Ciccotosto et al. 2013) with permission

Similar content being viewed by others

References

  • Akter R, Cao P, Noor H, Ridgway Z, Tu LH, Wang H, Wong AG, Zhang X, Abedini A, Schmidt AM, Raleigh DP (2016) Islet Amyloid polypeptide: structure, function, and pathophysiology. J Diabetes Res 2016:2798269

    Article  PubMed  CAS  Google Scholar 

  • Arya S, Singh AK, Khan T, Bhattacharya M, Datta A, Mukhopadhyay S (2016) Water rearrangements upon disorder-to-order amyloid transition. J Phys Chem Lett:4105–4110

  • Asthana S, Mallick B, Alexandrescu AT, Jha S (2018) IAPP in type II diabetes: basic research on structure, molecular interactions, and disease mechanisms suggests potential intervention strategies. Biochim Biophys Acta Biomembr

  • Axelrod D, Koppel DE, Schlessinger J, Elson E, Webb WW (1976) Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys J 16:1055–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bader AN, Hofman EG, Voortman J, en Henegouwen PM, Gerritsen HC (2009) Homo-FRET imaging enables quantification of protein cluster sizes with subcellular resolution. Biophys J 97:2613–2622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartels T, Choi JG, Selkoe DJ (2011) alpha-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477:107–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beam M, Silva MC, Morimoto RI (2012) Dynamic imaging by fluorescence correlation spectroscopy identifies diverse populations of polyglutamine oligomers formed in vivo. J Biol Chem 287:26136–26145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker W (2012) Fluorescence lifetime imaging–techniques and applications. J Microsc 247:119–136

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj V, Panicker MM, Udgaonkar JB (2014) Fluorescence anisotropy uncovers changes in protein packing with inclusion growth in a cellular model of polyglutamine aggregation. Biochemistry 53:3621–3636

    Article  CAS  PubMed  Google Scholar 

  • Bokvist M, Lindstrom F, Watts A, Grobner G (2004) Two types of Alzheimer’s beta-amyloid (1–40) peptide membrane interactions: aggregation preventing transmembrane anchoring versus accelerated surface fibril formation. J Mol Biol 335:1039–1049

    Article  CAS  PubMed  Google Scholar 

  • Bonfanti S, Lionetti MC, Fumagalli MR, Chirasani VR, Tiana G, Dokholyan NV, Zapperi S, La Porta CAM (2019) Molecular mechanisms of heterogeneous oligomerization of huntingtin proteins. Sci Rep 9:7615

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boni-Schnetzler M, Meier DT (2019) Islet inflammation in type 2 diabetes. Semin Immunopathol 41:501–513

    Article  PubMed  PubMed Central  Google Scholar 

  • Brender JR, Salamekh S, Ramamoorthy A (2012) Membrane disruption and early events in the aggregation of the diabetes related peptide IAPP from a molecular perspective. Acc Chem Res 45:454–462

    Article  CAS  PubMed  Google Scholar 

  • Buning S, Sharma A, Vachharajani S, Newcombe E, Ormsby A, Gao M, Gnutt D, Vopel T, Hatters DM, Ebbinghaus S (2017) Conformational dynamics and self-association of intrinsically disordered Huntingtin exon 1 in cells. Phys Chem Chem Phys 19:10738–10747

    Article  PubMed  CAS  Google Scholar 

  • Butterfield SM, Lashuel HA (2010) Amyloidogenic protein-membrane interactions: mechanistic insight from model systems. Angew Chem Int Ed Engl 49:5628–5654

    Article  CAS  PubMed  Google Scholar 

  • Caron NS, Desmond CR, Xia J, Truant R (2013) Polyglutamine domain flexibility mediates the proximity between flanking sequences in huntingtin. Proc Natl Acad Sci U S A 110:14610–14615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castelletto V, Hamley IW, Seitsonen J, Ruokolainen J, Harris G, Bellmann-Sickert K, Beck-Sickinger AG (2018) Conformation and aggregation of selectively PEGylated and Lipidated gastric peptide hormone human PYY3-36. Biomacromol 19:4320–4332

    Article  CAS  Google Scholar 

  • Chakraborty H, Chattopadhyay A (2015) Excitements and challenges in GPCR oligomerization: molecular insight from FRET. ACS Chem Neurosci 6:199–206

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty H, Chattopadhyay A (2017) Sensing tryptophan microenvironment of amyloid protein utilizing wavelength-selective fluorescence approach. J Fluoresc 27:1995–2000

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty H, Jafurulla M, Clayton AHA, Chattopadhyay A (2018) Exploring oligomeric state of the serotonin1A receptor utilizing photobleaching image correlation spectroscopy: implications for receptor function. Faraday Discuss 207:409–421

    Article  CAS  PubMed  Google Scholar 

  • Ciccotosto GD, Kozer N, Chow TT, Chon JW, Clayton AH (2013) Aggregation distributions on cells determined by photobleaching image correlation spectroscopy. Biophys J 104:1056–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clayton AH (2018) Fluorescence-based approaches for monitoring membrane receptor oligomerization. J Biosci 43:463–469

    Article  CAS  PubMed  Google Scholar 

  • Corral-Juan M, Serrano-Munuera C, Rabano A, Cota-Gonzalez D, Segarra-Roca A, Ispierto L, Cano-Orgaz AT, Adarmes AD, Mendez-Del-Barrio C, Jesus S, Mir P, Volpini V, Alvarez-Ramo R, Sanchez I, Matilla-Duenas A (2018) Clinical, genetic and neuropathological characterization of spinocerebellar ataxia type 37. Brain 141:1981–1997

    Article  PubMed  Google Scholar 

  • Dalal V, Arya S, Mukhopadhyay S (2016) Confined water in amyloid-competent oligomers of the prion protein. ChemPhysChem 17:2804–2807

    Article  CAS  PubMed  Google Scholar 

  • Das D, Mukhopadhyay S (2018) Studying backbone torsional dynamics of intrinsically disordered proteins using fluorescence depolarization kinetics. J Biosci 43:455–462

    Article  CAS  PubMed  Google Scholar 

  • Davies SW, Turmaine M, Cozens BA, DiFiglia M, Sharp AH, Ross CA, Scherzinger E, Wanker EE, Mangiarini L, Bates GP (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90:537–548

    Article  CAS  PubMed  Google Scholar 

  • De S, Wirthensohn DC, Flagmeier P, Hughes C, Aprile FA, Ruggeri FS, Whiten DR, Emin D, Xia Z, Varela JA, Sormanni P, Kundel F, Knowles TPJ, Dobson CM, Bryant C, Vendruscolo M, Klenerman D (2019) Different soluble aggregates of Aβ42 can give rise to cellular toxicity through different mechanisms. Nat Commun 10:1541

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dedmon MM, Lindorff-Larsen K, Christodoulou J, Vendruscolo M, Dobson CM (2005) Mapping long-range interactions in alpha-synuclein using spin-label NMR and ensemble molecular dynamics simulations. J Am Chem Soc 127:476–477

    Article  CAS  PubMed  Google Scholar 

  • Devauges V, Marquer C, Lecart S, Cossec JC, Potier MC, Fort E, Suhling K, Leveque-Fort S (2012) Homodimerization of amyloid precursor protein at the plasma membrane: a homoFRET study by time-resolved fluorescence anisotropy imaging. PLoS ONE 7:e44434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doura AK, Fleming KG (2004) Complex interactions at the helix-helix interface stabilize the glycophorin A transmembrane dimer. J Mol Biol 343:1487–1497

    Article  CAS  PubMed  Google Scholar 

  • Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN (2005) Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS J 272:5129–5148

    Article  CAS  PubMed  Google Scholar 

  • Dunker AK, Silman I, Uversky VN, Sussman JL (2008) Function and structure of inherently disordered proteins. Curr Opin Struct Biol 18:756–764

    Article  CAS  PubMed  Google Scholar 

  • Dyson HJ, Wright PE (2004) Unfolded proteins and protein folding studied by NMR. Chem Rev 104:3607–3622

    Article  CAS  PubMed  Google Scholar 

  • Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6:197–208

    Article  CAS  PubMed  Google Scholar 

  • Ebie AZ, Fleming KG (2007) Dimerization of the erythropoietin receptor transmembrane domain in micelles. J Mol Biol 366:517–524

    Article  CAS  PubMed  Google Scholar 

  • Ferreon AC, Gambin Y, Lemke EA, Deniz AA (2009) Interplay of alpha-synuclein binding and conformational switching probed by single-molecule fluorescence. Proc Natl Acad Sci U S A 106:5645–5650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gandy S, Simon AJ, Steele JW, Lublin AL, Lah JJ, Walker LC, Levey AI, Krafft GA, Levy E, Checler F, Glabe C, Bilker WB, Abel T, Schmeidler J, Ehrlich ME (2010) Days to criterion as an indicator of toxicity associated with human Alzheimer amyloid-beta oligomers. Ann Neurol 68:220–230

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ganesan S, Rohde G, Eckermann K, Sroka K, Schaefer MK, Dohm CP, Kermer P, Haase G, Wouters F, Bahr M, Weishaupt JH (2008) Mutant SOD1 detoxification mechanisms in intact single cells. Cell Death Differ 15:312–321

    Article  CAS  PubMed  Google Scholar 

  • Goldsbury C, Goldie K, Pellaud J, Seelig J, Frey P, Muller SA, Kistler J, Cooper GJ, Aebi U (2000) Amyloid fibril formation from full-length and fragments of amylin. J Struct Biol 130:352–362

    Article  CAS  PubMed  Google Scholar 

  • Gralle M, Botelho MG, Wouters FS (2009) Neuroprotective secreted amyloid precursor protein acts by disrupting amyloid precursor protein dimers. J Biol Chem 284:15016–15025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haldar S, Chattopadhyay A (2009) Green fluorescent protein: a molecular lantern that illuminates the cellular interior. J Biosci 34:169–172

    Article  CAS  PubMed  Google Scholar 

  • Hebda JA, Miranker AD (2009) The interplay of catalysis and toxicity by amyloid intermediates on lipid bilayers: insights from type II diabetes. Annu Rev Biophys 38:125–152

    Article  CAS  PubMed  Google Scholar 

  • Herrera JE, Correia JJ, Jones AE, Olson MO (1996) Sedimentation analyses of the salt- and divalent metal ion-induced oligomerization of nucleolar protein B23. Biochemistry 35:2668–2673

    Article  CAS  PubMed  Google Scholar 

  • Jain N, Bhattacharya M, Mukhopadhyay S (2011) Chain collapse of an amyloidogenic intrinsically disordered protein. Biophys J 101:1720–1729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain N, Bhasne K, Hemaswasthi M, Mukhopadhyay S (2013) Structural and dynamical insights into the membrane-bound alpha-synuclein. PLoS ONE 8:e83752

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jana MK, Cappai R, Pham CL, Ciccotosto GD (2016) Membrane-bound tetramer and trimer Aβ oligomeric species correlate with toxicity towards cultured neurons. J Neurochem 136:594–608

    Article  CAS  PubMed  Google Scholar 

  • Kaylor J, Bodner N, Edridge S, Yamin G, Hong DP, Fink AL (2005) Characterization of oligomeric intermediates in alpha-synuclein fibrillation: FRET studies of Y125W/Y133F/Y136F alpha-synuclein. J Mol Biol 353:357–372

    Article  CAS  PubMed  Google Scholar 

  • Kim YE, Hosp F, Frottin F, Ge H, Mann M, Hayer-Hartl M, Hartl FU (2016) Soluble oligomers of PolyQ-expanded huntingtin target a multiplicity of key cellular factors. Mol Cell 63:951–964

    Article  CAS  PubMed  Google Scholar 

  • Kitamura A, Inada N, Kubota H, Matsumoto G, Kinjo M, Morimoto RI, Nagata K (2014) Dysregulation of the proteasome increases the toxicity of ALS-linked mutant SOD1. Genes Cells 19:209–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klucken J, Outeiro TF, Nguyen P, McLean PJ, Hyman BT (2006) Detection of novel intracellular alpha-synuclein oligomeric species by fluorescence lifetime imaging. FASEB J 20:2050–2057

    Article  CAS  PubMed  Google Scholar 

  • Klug GM, Losic D, Subasinghe SS, Aguilar MI, Martin LL, Small DH (2003) Beta-amyloid protein oligomers induced by metal ions and acid pH are distinct from those generated by slow spontaneous ageing at neutral pH. Eur J Biochem 270:4282–4293

    Article  CAS  PubMed  Google Scholar 

  • Koppel DE, Axelrod D, Schlessinger J, Elson EL, Webb WW (1976) Dynamics of fluorescence marker concentration as a probe of mobility. Biophys J 16:1315–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotler SA, Brender JR, Vivekanandan S, Suzuki Y, Yamamoto K, Monette M, Krishnamoorthy J, Walsh P, Cauble M, Holl MM, Marsh EN, Ramamoorthy A (2015) High-resolution NMR characterization of low abundance oligomers of amyloid-beta without purification. Sci Rep 5:11811

    Article  PubMed  PubMed Central  Google Scholar 

  • Lajoie P, Snapp EL (2010) Formation and toxicity of soluble polyglutamine oligomers in living cells. PLoS ONE 5:e15245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lakowicz JR (2006) Principles of Fluorescence Spectroscopy, 3rd edn. Springer

  • Lansbury PT, Lashuel HA (2006) A century-old debate on protein aggregation and neurodegeneration enters the clinic. Nature 443:774–779

    Article  CAS  PubMed  Google Scholar 

  • Li C, Arakawa T (2019) Application of native polyacrylamide gel electrophoresis for protein analysis: bovine serum albumin as a model protein. Int J Biol Macromol 125:566–571

    Article  CAS  PubMed  Google Scholar 

  • Li R, Gorelik R, Nanda V, Law PB, Lear JD, DeGrado WF, Bennett JS (2004) Dimerization of the transmembrane domain of Integrin alphaIIb subunit in cell membranes. J Biol Chem 279:26666–26673

    Article  CAS  PubMed  Google Scholar 

  • Magde D, Elson EL, Webb WW (1974) Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13:29–61

    Article  CAS  PubMed  Google Scholar 

  • Margolis RL, Ross CA (2001) Expansion explosion: new clues to the pathogenesis of repeat expansion neurodegenerative diseases. Trends Mol Med 7:479–482

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto G, Stojanovic A, Holmberg CI, Kim S, Morimoto RI (2005) Structural properties and neuronal toxicity of amyotrophic lateral sclerosis-associated Cu/Zn superoxide dismutase 1 aggregates. J Cell Biol 171:75–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, Bush AI, Masters CL (1999) Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 46:860–866

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay S, Krishnan R, Lemke EA, Lindquist S, Deniz AA (2007) A natively unfolded yeast prion monomer adopts an ensemble of collapsed and rapidly fluctuating structures. Proc Natl Acad Sci U S A 104:2649–2654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura K, Jeong SY, Uchihara T, Anno M, Nagashima K, Nagashima T, Ikeda S, Tsuji S, Kanazawa I (2001) SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet 10:1441–1448

    Article  CAS  PubMed  Google Scholar 

  • Nath S, Meuvis J, Hendrix J, Carl SA, Engelborghs Y (2010) Early aggregation steps in alpha-synuclein as measured by FCS and FRET: evidence for a contagious conformational change. Biophys J 98:1302–1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nibbeling EAR, Duarri A, Verschuuren-Bemelmans CC, Fokkens MR, Karjalainen JM, Smeets C, de Boer-Bergsma JJ, van der Vries G, Dooijes D, Bampi GB, van Diemen C, Brunt E, Ippel E, Kremer B, Vlak M, Adir N, Wijmenga C, van de Warrenburg BPC, Franke L, Sinke RJ, Verbeek DS (2017) Exome sequencing and network analysis identifies shared mechanisms underlying spinocerebellar ataxia. Brain 140:2860–2878

    Article  PubMed  Google Scholar 

  • Nicke A, Rettinger J, Mutschler E, Schmalzing G (1999) Blue native PAGE as a useful method for the analysis of the assembly of distinct combinations of nicotinic acetylcholine receptor subunits. J Recept Signal Transduct Res 19:493–507

    Article  CAS  PubMed  Google Scholar 

  • Pandhare A, Stuebler AG, Pirayesh E, Jansen M (2019) A modified clear-native polyacrylamide gel electrophoresis technique to investigate the oligomeric state of MBP-5-HT3A-intracellular domain chimeras. Protein Expr Purif 153:45–52

    Article  CAS  PubMed  Google Scholar 

  • Park JY, Joo K, Woo SJ (2020) Ophthalmic manifestations and genetics of the polyglutamine autosomal-dominant spinocerebellar ataxias: a review. Front Neurosci 14

  • Petersen RC, Aisen P, Boeve BF, Geda YE, Ivnik RJ, Knopman DS, Mielke M, Pankratz VS, Roberts R, Rocca WA, Weigand S, Weiner M, Wiste H, Jack Jr CR (2013) Mild cognitive impairment due to Alzheimer disease in the community. 74:199-208

  • Quist A, Doudevski I, Lin H, Azimova R, Ng D, Frangione B, Kagan B, Ghiso J, Lal R (2005) Amyloid ion channels: a common structural link for protein-misfolding disease. Proc Natl Acad Sci U S A 102:10427–10432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratha BN, Kim M, Sahoo B, Garai K, Lee D, Bhunia A (2018) Insulin-eukaryotic model membrane interaction: Mechanistic insight of insulin fibrillation and membrane disruption. Biochim Biophys Acta

  • Rawat A, Maity BK, Chandra B, Maiti S (2018) Aggregation-induced conformation changes dictate islet amyloid polypeptide (IAPP) membrane affinity. Biochim Biophys Acta Biomembr

  • Riederer P, Berg D, Casadei N, Cheng F, Classen J, Dresel C, Jost W, Krüger R, Müller T, Reichmann H, Rieß O, Storch A, Strobel S, van Eimeren T, Völker HU, Winkler J, Winklhofer KF, Wüllner U, Zunke F, Monoranu CM (2019) α-Synuclein in Parkinson’s disease: causal or bystander. J Neural Trans (Vienna, Austria:1996) 126:815–840

    Article  Google Scholar 

  • Ripsin CM, Kang H, Urban RJ (2009) Management of blood glucose in type 2 diabetes mellitus. Am Fam Phys 79:29–36

    Google Scholar 

  • Roberti MJ, Jovin TM, Jares-Erijman E (2011) Confocal fluorescence anisotropy and FRAP imaging of alpha-synuclein amyloid aggregates in living cells. PLoS ONE 6:e23338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10(Suppl):S10-17

    Article  PubMed  CAS  Google Scholar 

  • Runnels LW, Scarlata SF (1995) Theory and application of fluorescence homotransfer to melittin oligomerization. Biophys J 69:1569–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samson C, Celli F, Hendriks K, Zinke M, Essawy N, Herrada I, Arteni AA, Theillet FX, Alpha-Bazin B, Armengaud J, Coirault C, Lange A, Zinn-Justin S (2017) Emerin self-assembly mechanism: role of the LEM domain. FEBS J 284:338–352

    Article  CAS  PubMed  Google Scholar 

  • Sanbe A, Yamauchi J, Miyamoto Y, Fujiwara Y, Murabe M, Tanoue A (2007) Interruption of CryAB-amyloid oligomer formation by HSP22. J Biol Chem 282:555–563

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Fernandez A, Diehl C, Houston JE, Leung AE, Tellam JP, Rogers SE, Prevost S, Ulvenlund S, Sjögren H, Wahlgren M (2020) An integrative toolbox to unlock the structure and dynamics of protein–surfactant complexes. Nanoscale Adv 2:4011–4023

    Article  CAS  Google Scholar 

  • Santos AN, Torkler S, Nowak D, Schlittig C, Goerdes M, Lauber T, Trischmann L, Schaupp M, Penz M, Tiller FW, Bohm G (2007) Detection of amyloid-beta oligomers in human cerebrospinal fluid by flow cytometry and fluorescence resonance energy transfer. J Alzheimers Dis 11:117–125

    Article  CAS  PubMed  Google Scholar 

  • Schaffar G, Breuer P, Boteva R, Behrends C, Tzvetkov N, Strippel N, Sakahira H, Siegers K, Hayer-Hartl M, Hartl FU (2004) Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation. Mol Cell 15:95–105

    Article  CAS  PubMed  Google Scholar 

  • Scherzinger E, Sittler A, Schweiger K, Heiser V, Lurz R, Hasenbank R, Bates GP, Lehrach H, Wanker EE (1999) Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington’s disease pathology. Proc Natl Acad Sci U S A 96:4604–4609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seki T, Shimahara T, Yamamoto K, Abe N, Amano T, Adachi N, Takahashi H, Kashiwagi K, Saito N, Sakai N (2009) Mutant gammaPKC found in spinocerebellar ataxia type 14 induces aggregate-independent maldevelopment of dendrites in primary cultured Purkinje cells. Neurobiol Dis 33:260–273

    Article  CAS  PubMed  Google Scholar 

  • Sengupta I, Udgaonkar J (2019) Monitoring site-specific conformational changes in real-time reveals a misfolding mechanism of the prion protein. Elife 8

  • Sengupta U, Nilson AN, Kayed R (2016) The role of amyloid-β oligomers in toxicity, propagation, and immunotherapy. EBioMedicine 6:42–49

    Article  PubMed  PubMed Central  Google Scholar 

  • Serpionov GV, Alexandrov AI, Antonenko YN, Ter-Avanesyan MD (2015) A protein polymerization cascade mediates toxicity of non-pathological human huntingtin in yeast. Sci Rep 5:18407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smyth E, Syme CD, Blanch EW, Hecht L, Vasak M, Barron LD (2001) Solution structure of native proteins with irregular folds from Raman optical activity. Biopolymers 58:138–151

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Brender JR, Soper MT, Krishnamoorthy J, Zhou Y, Ruotolo BT, Kotov NA, Ramamoorthy A, Marsh EN (2013) Resolution of oligomeric species during the aggregation of Abeta1-40 using (19)F NMR. Biochemistry 52:1903–1912

    Article  CAS  PubMed  Google Scholar 

  • Syme CD, Blanch EW, Holt C, Jakes R, Goedert M, Hecht L, Barron LD (2002) A Raman optical activity study of rheomorphism in caseins, synucleins and tau. New insight into the structure and behaviour of natively unfolded proteins. Eur J Biochem 269:148–156

    Article  CAS  PubMed  Google Scholar 

  • Szilvay GR, Blenner MA, Shur O, Cropek DM, Banta S (2009) A FRET-based method for probing the conformational behavior of an intrinsically disordered repeat domain from Bordetella pertussis adenylate cyclase. Biochemistry 48:11273–11282

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Mihara H (2012) FRET detection of amyloid beta-peptide oligomerization using a fluorescent protein probe presenting a pseudo-amyloid structure. Chem Commun (Camb) 48:1568–1570

    Article  CAS  Google Scholar 

  • Takahashi Y, Okamoto Y, Popiel HA, Fujikake N, Toda T, Kinjo M, Nagai Y (2007) Detection of polyglutamine protein oligomers in cells by fluorescence correlation spectroscopy. J Biol Chem 282:24039–24048

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Kikuchi S, Katada S, Nagai Y, Nishizawa M, Onodera O (2008) Soluble polyglutamine oligomers formed prior to inclusion body formation are cytotoxic. Hum Mol Genet 17:345–356

    Article  CAS  PubMed  Google Scholar 

  • Tompa P (2005) The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett 579:3346–3354

    Article  CAS  PubMed  Google Scholar 

  • Tramier M, Gautier I, Piolot T, Ravalet S, Kemnitz K, Coppey J, Durieux C, Mignotte V, Coppey-Moisan M (2002) Picosecond-hetero-FRET microscopy to probe protein-protein interactions in live cells. Biophys J 83:3570–3577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turoverov KK, Kuznetsova IM, Uversky VN (2010) The protein kingdom extended: ordered and intrinsically disordered proteins, their folding, supramolecular complex formation, and aggregation. Prog Biophys Mol Biol 102:73–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tycko R (2011) Solid-state NMR studies of amyloid fibril structure. Annu Rev Phys Chem 62:279–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uversky VN (2008) Amyloidogenesis of natively unfolded proteins. Curr Alzheimer Res 5:260–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uversky VN (2009) Intrinsically disordered proteins and their environment: effects of strong denaturants, temperature, pH, counter ions, membranes, binding partners, osmolytes, and macromolecular crowding. Protein J 28:305–325

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN (2014) Introduction to intrinsically disordered proteins (IDPs). Chem Rev 114:6557–6560

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN, Gillespie JR, Fink AL (2000) Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 41:415–427

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN, Li J, Fink AL (2001) Evidence for a partially folded intermediate in alpha-synuclein fibril formation. J Biol Chem 276:10737–10744

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN, Oldfield CJ, Dunker AK (2005) Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol Recognit 18:343–384

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN, Oldfield CJ, Dunker AK (2008) Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys 37:215–246

    Article  CAS  PubMed  Google Scholar 

  • van Ham TJ, Esposito A, Kumita JR, Hsu ST, Kaminski Schierle GS, Kaminski CF, Dobson CM, Nollen EA, Bertoncini CW (2010) Towards multiparametric fluorescent imaging of amyloid formation: studies of a YFP model of alpha-synuclein aggregation. J Mol Biol 395:627–642

    Article  PubMed  CAS  Google Scholar 

  • Varma R, Mayor S (1998) GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394:798–801

    Article  CAS  PubMed  Google Scholar 

  • Veerapathiran S, Wohland T (2018) Fluorescence techniques in developmental biology. J Biosci 43:541–553

    Article  PubMed  Google Scholar 

  • Wang Y, Goodson T 3rd (2007) Early aggregation in prion peptide nanostructures investigated by nonlinear and ultrafast time-resolved fluorescence spectroscopy. J Phys Chem B 111:327–330

    Article  CAS  PubMed  Google Scholar 

  • Wennmalm S, Chmyrov V, Widengren J, Tjernberg L (2015) Highly sensitive FRET-FCS detects amyloid beta-peptide oligomers in solution at physiological concentrations. Anal Chem 87:11700–11705

    Article  CAS  PubMed  Google Scholar 

  • Williams TL, Serpell LC (2011) Membrane and surface interactions of Alzheimer’s Abeta peptide–insights into the mechanism of cytotoxicity. FEBS J 278:3905–3917

    Article  CAS  PubMed  Google Scholar 

  • Wong YC, Krainc D (2017) α-synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies. Nat Med 23:1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xi W, Wang X, Laue TM, Denis CL (2016) Multiple discrete soluble aggregates influence polyglutamine toxicity in a Huntington’s disease model system. Sci Rep 6

  • Yeow EK, Clayton AH (2007) Enumeration of oligomerization states of membrane proteins in living cells by homo-FRET spectroscopy and microscopy: theory and application. Biophys J 92:3098–3104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoghbi HY, Orr HT (2000) Glutamine repeats and neurodegeneration. Annu Rev Neurosci 23:217–247

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by research Grant from Science and Technology Department, Government of Odisha. H.C. thanks the University Grants Commission (UGC) for the UGC Assistant Professor position. We acknowledge Department of Science and Technology, New Delhi and UGC for providing instrument facility to the School of Chemistry, Sambalpur University under the FIST and DRS programs, respectively. We thank members of Chakraborty laboratory for their comments and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirak Chakraborty.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirdha, L., Chakraborty, H. Fluorescence-based techniques for the detection of the oligomeric status of proteins: implication in amyloidogenic diseases. Eur Biophys J 50, 671–685 (2021). https://doi.org/10.1007/s00249-021-01505-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-021-01505-9

Keywords

Navigation