Skip to main content
Log in

Direct visual detection of MnO2 nanosheets within seconds

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The increasing application of nanomaterials will inevitably lead to their release into the environment, which may pose a threat to the environment and human health. As such, there is an urgent need to detect various nanomaterials. In the present work, we present a novel, rapid, and simple visual detection of MnO2 nanosheets in buffer solution and environmental water sample. In this assay, a redox reaction between MnO2 nanosheets and 3,3′,5,5′-tetramethylbenzidine (TMB) occurred, leading to the oxidation of TMB to TMB diimine. This redox reaction generated different colors dependent on the concentration of MnO2 nanosheets, including colorless, blue, green, and yellow, which allowed semiquantitative detection of MnO2 nanosheets with the naked eye. The detection range of the visual assay was 2–15 μg/mL, and the minimum concentration of MnO2 nanosheets can be visually detected at concentrations down to 2.0 μg/mL. Moreover, the developed visual assay showed a high selectivity to MnO2 nanosheets over Mn2+ ions, tetramethylammonium hydroxide, hydrogen peroxide, graphene oxide, and graphitic carbon nitride nanosheets.

Visual detection of MnO2 nanosheets

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rocca D, Liu D, Lin W. Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc Chem Res. 2011;44:957–68.

    Article  Google Scholar 

  2. Jariwala D, Sangwan V, Lauhon L, Marks T, Hersam. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem Soc Rev. 2013;42:2824–60.

    Article  CAS  Google Scholar 

  3. Wang B, Wu H, Yu L, Xu R, Lim T. Template-free formation of uniform urchin-like α-FeOOH hollow spheres with superior capability for water treatment. Adv Mater. 2012;24:1111–6.

    Article  CAS  Google Scholar 

  4. Yao J, Yang M, Duan Y. Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: new insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem Rev. 2014;114:6130–78.

    Article  CAS  Google Scholar 

  5. Yao L, Xu S. Detection of magnetic nanomaterials in molecular imaging and diagnosis applications. Nanotechnol Rev. 2014;3:247–68.

    CAS  Google Scholar 

  6. Zeng S, Baillargeat D, Ho H, Yong K. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev. 2014;43:3426–52.

    Article  CAS  Google Scholar 

  7. Zhou Z, Tian N, Li J, Broadwell I, Sun S. Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem Soc Rev. 2011;40:4167–85.

    Article  CAS  Google Scholar 

  8. Sharifi S, Behzadi S, Laurent S, Forrest M, Stroeve P, Mahmoudi M. Toxicity of nanomaterials. Chem Soc Rev. 2012;41:2323–43.

    Article  CAS  Google Scholar 

  9. Borovinskaya O, Gschwind S, Hattendorf B, Tanner M, Günther D. Simultaneous mass quantification of nanoparticles of different composition in a mixture by microdroplet generator-ICPTOFMS. Anal Chem. 2014;86:8142–8.

    Article  CAS  Google Scholar 

  10. Hartmann G, Baumgartner T, Schuster M. Influence of particle coating and matrix constituents on the cloud point extraction efficiency of silver nanoparticles (Ag-NPs) and application for monitoring the formation of Ag-NPs from Ag+. Anal Chem. 2013;86:790–6.

    Article  Google Scholar 

  11. Bouri M, Salghi R, Algarra M, Zougagh M, Ríos A. A novel approach to size separation of gold nanoparticles by capillary electrophoresis-evaporative light scattering detection. RSC Adv. 2015;5:16672–7.

    Article  CAS  Google Scholar 

  12. Tsogas G, Giokas D, Vlessidis A. Ultratrace determination of silver, gold, and iron oxide nanoparticles by micelle mediated preconcentration/selective back-extraction coupled with flow injection chemiluminescence detection. Anal Chem. 2014;86:3484–92.

    Article  CAS  Google Scholar 

  13. Hartmann G, Hutterer C, Schuster M. Ultra-trace determination of silver nanoparticles in water samples using cloud point extraction and ETAAS. J Anal Atom Spectrom. 2013;28:567–72.

    Article  CAS  Google Scholar 

  14. Hadioui M, Merdzan V, Wilkinson K. Detection and characterization of ZnO nanoparticles in surface and waste waters using single particle ICPMS. Environ Sci Technol. 2015;49:6141–8.

    Article  CAS  Google Scholar 

  15. Teo W, Ambrosi A, Pumera M. Direct electrochemistry of copper oxide nanoparticles in alkaline media. Electrochem Commun. 2013;28:51–3.

    Article  CAS  Google Scholar 

  16. Kai K, Yoshida Y, Kageyama H, Saito G, Ishigaki T, Furukawa Y. Room-temperature synthesis of manganese oxide monosheets. J Am Chem Soc. 2008;130:15938–43.

    Article  CAS  Google Scholar 

  17. Chen Y, Ye D, Wu M, Chen H, Zhang L, Shi J. Break-up of two-dimensional MnO2 nanosheets promotes ultrasensitive pH-triggered theranostics of cancer. Adv Mater. 2014;26:7019–26.

    Article  CAS  Google Scholar 

  18. Deng R, Xie X, Vendrell M, Chang Y, Liu X. Intracellular glutathione detection using MnO2-nanosheet-modified upconversion nanoparticles. J Am Chem Soc. 2011;133:20168–71.

    Article  CAS  Google Scholar 

  19. Li N, Diao W, Han Y, Pan W, Zhang T, Tang B. MnO2-modified persistent luminescence nanoparticles for detection and imaging of glutathione in living cells and in vivo. Chem Eur J. 2014;20:16488–91.

    Article  CAS  Google Scholar 

  20. Park S, Shim H, Lee C, Song H, Park I, Kim J. Tailoring uniform γ-MnO2 nanosheets on highly conductive three-dimensional current collectors for high-performance supercapacitor electrodes. Nano Res. 2015;8:990–1004.

    Article  CAS  Google Scholar 

  21. Yang K, Zeng M, Hu X, Guo B, Zhou J. Layered MnO2 nanosheet as a label-free nanoplatform for rapid detection of mercury (II). Analyst. 2014;139:4445–8.

    Article  CAS  Google Scholar 

  22. Zhai W, Wang C, Yu P, Wang Y, Mao L. Single-layer MnO2 nanosheets suppressed fluorescence of 7-hydroxycoumarin: mechanistic study and application for sensitive sensing of ascorbic acid in vivo. Anal Chem. 2014;86:12206–13.

    Article  CAS  Google Scholar 

  23. Zhang X, Zheng C, Guo S, Li J, Yang H, Chen G. Turn-on fluorescence sensor for intracellular imaging of glutathione using g-C3N4 nanosheet-MnO2 sandwich nanocomposite. Anal Chem. 2014;86:3426–34.

    Article  CAS  Google Scholar 

  24. Zhao Z, Fan H, Zhou G, Bai H, Liang H, Wang R. Activatable fluorescence/MRI bimodal platform for tumor cell imaging via MnO2 nanosheet-aptamer nanoprobe. J Am Chem Soc. 2014;136:11220–3.

    Article  CAS  Google Scholar 

  25. He D, He X, Wang K, Yang X, Yang X, Li X. Nanometer-sized manganese oxide-quenched fluorescent oligonucleotides: an effective sensing platform for probing biomolecular interactions. Chem Commun. 2014;50:11049–52.

    Article  CAS  Google Scholar 

  26. Sinha A, Pradhan M, Pal T. Morphological evolution of two-dimensional MnO2 nanosheets and their shape transformation to one-dimensional ultralong MnO2 nanowires for robust catalytic activity. J Phys Chem C. 2013;117:23976–86.

    Article  CAS  Google Scholar 

  27. He Y, Huang W, Liang Y, Yu H. A low-cost and label-free assay for hydrazine using MnO2 nanosheets as colorimetric probes. Sensor Actuat B. 2015;220:927–31.

    Article  CAS  Google Scholar 

  28. Yuan Y, Wu S, Shu F, Liu Z. An MnO2 nanosheet as a label-free nanoplatform for homogeneous biosensing. Chem Commun. 2014;50:1095–7.

    Article  CAS  Google Scholar 

  29. Liu Z, Xu K, Sun H, Yin S. One-step synthesis of single-layer MnO2 nanosheets with multi-role sodium dodecyl sulfate for high-performance pseudocapacitors. Small. 2015;11:2182–91.

    Article  CAS  Google Scholar 

  30. Josephy P, Eling T, Mason R. The horseradish peroxidase-catalyzed oxidation of 3, 5, 3', 5'-tetramethylbenzidine. Free radical and charge-transfer complex intermediates. J Biol Chem. 1982;257:3669–75.

    CAS  Google Scholar 

  31. Chen X, Su B, Cai Z, Chen X, Oyama M. PtPd nanodendrites supported on graphene nanosheets: a peroxidase-like catalyst for colorimetric detection of H2O2. Sensor Actuat B. 2014;201:286–92.

    Article  CAS  Google Scholar 

  32. Ray C, Dutta S, Sarkar S, Sahoo R, Roy A, Pal T. Intrinsic peroxidase-like activity of mesoporous nickel oxide for selective cysteine sensing. J Mater Chem B. 2014;2:6097–105.

    Article  CAS  Google Scholar 

  33. Liu X, Wang Q, Zhao H, Zhang L, Su Y, Lv Y. BSA-templated MnO2 nanoparticles as both peroxidase and oxidase mimics. Analyst. 2012;137:4552–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The support of this research by the Foundation of Science and Technology Department of Sichuan Province (Grant No. 2015JY0053), Doctoral Program of Southwest University of Science and Technology (Grant No. 14zx7165), Teaching Reform Project of Southwest University of Science and Technology (Grant No. 15xn0077), and Undergraduate Innovation Fund Project of Southwest University of Science and Technology (Grant No. CX15-011) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi He.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 198 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Wang, Z. & Long, D. Direct visual detection of MnO2 nanosheets within seconds. Anal Bioanal Chem 408, 1231–1236 (2016). https://doi.org/10.1007/s00216-015-9232-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9232-y

Keywords

Navigation