Skip to main content
Log in

X-ray absorption near-edge structure micro-spectroscopy study of vanadium speciation in Phycomyces blakesleeanus mycelium

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Vanadium speciation in the fungus Phycomyces blakesleeanus was examined by X-ray absorption near-edge structure (XANES) spectroscopy, enabling assessment of oxidation states and related molecular symmetries of this transition element in the fungus. The exposure of P. blakesleeanus to two physiologically important vanadium species (V5+ and V4+) resulted in the accumulation of this metal in central compartments of 24 h old mycelia, most probably in vacuoles. Tetrahedral V5+, octahedral V4+, and proposed intracellular complexes of V5+ were detected simultaneously after addition of a physiologically relevant concentration of V5+ to the mycelium. A substantial fraction of the externally added V4+ remained mostly in its original form. However, observable variations in the pre-edge-peak intensities in the XANES spectra indicated intracellular complexation and corresponding changes in the molecular coordination symmetry. Vanadate complexation was confirmed by 51V NMR and Raman spectroscopy, and potential binding compounds including cell-wall constituents (chitosan and/or chitin), (poly)phosphates, DNA, and proteins are proposed. The evidenced vanadate complexation and reduction could also explain the resistance of P. blakesleeanus to high extracellular concentrations of vanadium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wong J, Messmer RP, Maylotte DH (1984) K-edge absorption spectra of selected vanadium compounds. Phys Rev B 30:5596–5610. doi:10.1103/PhysRevB.30.5596

    Article  CAS  Google Scholar 

  2. Sutton SR, Karner J, Papike J, Delaney JS, Shearer C, Newville M, Eng P, Rivers M, Dyar MD (2005) Vanadium K edge XANES of synthetic and natural basaltic glasses and application to microscale oxygen barometry. Geochim Cosmochim Acta 69:2333–2348. doi:10.1016/j.gca.2004.10.013

    Article  CAS  Google Scholar 

  3. Chasteen N (1983) The biochemistry of vanadium. Struct Bond 53:105–138

    Article  CAS  Google Scholar 

  4. Rehder D (2008) Bioinorganic vanadium chemistry. J. Wiley and Sons, Chichester, New York

    Book  Google Scholar 

  5. Aureliano M, Gândara RMC (2005) Decavanadate effects in biological systems. J Inorg Biochem 99:979–985. doi:10.1016/j.jinorgbio.2005.02.024

    Article  CAS  Google Scholar 

  6. Soares SS, Gutiérrez-Merino C, Aureliano M (2007) Decavanadate induces mitochondrial membrane depolarization and inhibits oxygen consumption. J Inorg Biochem 101:789–796. doi:10.1016/j.jinorgbio.2007.01.012

    Article  CAS  Google Scholar 

  7. Gândara RMC, Soares SS, Martins H, Gutiérrez-Merino C, Aureliano M (2005) Vanadate oligomers: in vivo effects in hepatic vanadium accumulation and stress markers. J Inorg Biochem 99:1238–1244. doi:10.1016/j.jinorgbio.2005.02.023

    Article  Google Scholar 

  8. Stankiewicz PJ, Tracey AS,Crans DC (1995) Stimulation of enzyme activity by oxovanadium complexes. In: Sigel H, Sigel A (eds) Met Ions Biol. Syst. Vanadium its role life. Marcel Dekker, Inc New York, 249–285

  9. Elberg G, Li J, Shechter Y (1994) Vanadium activates or inhibits receptor and non-receptor protein tyrosine kinases in cefl-freeexperiments, depending on its oxidation state: possible role of endogenous vanadium in controlling cellular protein tyrosine kinase activity. J Biol Chem 269:9521–9527

    CAS  Google Scholar 

  10. Cohen MD, Sen AC, Cheng-I W (1987) Vanadium inhibition of yeast glucose-6-phosphate dehydrogenase. Inorg Chim Acta 138:179–186. doi:10.1016/S0020-1693(00)81220-7

    Article  CAS  Google Scholar 

  11. Salditt T, Dučić T (2014) X-Ray Microscopy for Neuroscience: Novel Opportunities by Coherent Optics. In: Fornasiero E, Silvio R (eds) Super-Resolution Microsc. Tech. Neurosci. Ser. pp 257–290

  12. De Groot FMF, Glatzel P, Bergmann U, Van Aken PA, Barrea RA, Klemme S, Hävecker M, Knop-Gericke A, Heijboer WM, Weckhuysen BM (2005) 1s2p resonant inelastic X-ray scattering of iron oxides. J Phys Chem B 109:20751–20762. doi:10.1021/jp054006s

    Article  Google Scholar 

  13. Giuli G, Paris E, Mungall J, Romano C, Dingwell D (2004) V oxidation state and coordination number in silicate glasses by XAS. Am Mineral 89:1640–1646

    CAS  Google Scholar 

  14. Chaurand P, Rose J, Briois V, Olivi L, Hazemann J-L, Proux O, Domas J, Bottero J-Y (2007) Environmental impacts of steel slag reused in road construction: a crystallographic and molecular (XANES) approach. J Hazard Mater 139:537–542. doi:10.1016/j.jhazmat.2006.02.060

    Article  CAS  Google Scholar 

  15. Bacewicz R, Wasiucionek M, Twaróg A, Filipowicz J, Jóźwiak P, Garbarczyk J (2005) A XANES study of the valence state of vanadium in lithium vanadate phosphate glasses. J Mater Sci 40:4267–4270. doi:10.1007/s10853-005-2827-5

    Article  CAS  Google Scholar 

  16. Vanko G, De Groot FMF, Huotari S, Cava RJ, Lorenz T, Reuther M (2008) Intersite 4p-3d hybridization in cobalt oxides: a resonant x-ray emission spectroscopy study. Phys Rev B. 1–7

  17. Crans DC, Smee JJ, Gaidamauskas E, Yang L (2004) The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem Rev 104:849–902. doi:10.1021/cr020607t

    Article  CAS  Google Scholar 

  18. Levina A, McLeod AI, Lay PA (2014) Vanadium speciation by XANES spectroscopy: a three-dimensional approach. Chem Eur J 20:12056–12060. doi:10.1002/chem.201403993

    Article  CAS  Google Scholar 

  19. Safonova OV, Florea M, Bilde J, Delichere P, Millet JMM (2009) Local environment of vanadium in V/Al/O-mixed oxide catalyst for propane ammoxidation: Characterization by in situ valence-to-core X-ray emission spectroscopy and X-ray absorption spectroscopy. J Catal 268:156–164

    Article  CAS  Google Scholar 

  20. Pohl AH, Guda AA, Shapovalov VV, Witte R, Das B, Scheiba F, Rothe J, Soldatov AV, Fichtner M (2014) Oxidation state and local structure of a high-capacity LiF/Fe(V2O5) conversion cathode for Li-ion batteries. Acta Mater 68:179–188. doi:10.1016/j.actamat.2014.01.016

    Article  CAS  Google Scholar 

  21. Arber JM, Dobson BR, Eady RR, Hasnain SS, Garner DC, Matsushita T, Nomura M, Smith BE (1989) Vanadium K-edge X-ray-absorption spectroscopy of the functioning and thionine-oxidized forms of the VFe-protein of the vanadium nitrogenase from Azotobacter chroococcum. Biochem J 258:733–737

    Article  CAS  Google Scholar 

  22. Aitken JB, Levina A, Lay PA (2011) Studies on the biotransformations and biodistributions of metal-containing drugs using X-Ray Absorption Spectroscopy. Curr Top Med Chem 11:553–571

    Article  CAS  Google Scholar 

  23. Frank P, Hodgson KO, Kustin K, Robinson WE (1998) Vanadium K-edge X-ray Absorption Spectroscopy reveals species differences within the same Ascidian Genera: A comparasion of whole blod from Ascidia Nigra and Ascidia Ceratodes. J Biol Chem 273:24498–24503. doi:10.1074/jbc.273.38.24498

    Article  CAS  Google Scholar 

  24. Žižić M, Živić M, Maksimović V, Stanić M, Križak S, Cvetić Antić T, Zakrzewska J (2014) Vanadate influence on metabolism of sugar phosphates in fungus Phycomyces blakesleeanus. PLoS One 9:e102849. doi:10.1371/journal.pone.0102849

    Article  Google Scholar 

  25. Žižić M, Živić M, Spasojević I, Bogdanović Pristov J, Stanić M, Cvetić Antić T, Zakrzewska J (2013) The interactions of vanadium with Phycomyces blakesleeanus mycelium: enzymatic reduction, transport and metabolic effects. Res Microbiol 164:61–69. doi:10.1016/j.resmic.2012.08.007

    Article  Google Scholar 

  26. Sutter RP (1975) Mutations affecting sexual development in Phycomyces blakesleeanus. Proc Natl Acad Sci U S A 72:127–130

    Article  CAS  Google Scholar 

  27. Gordon J (2001) Use of vanadate as protein-phosphotyrosine phosphatase inhibitor. Methods Enzymol 201:477–482

    Article  Google Scholar 

  28. Klionsky DJ, Herman PK, Emr SD (1990) The fungal vacuole: composition, function, and biogenesis. Microbiol Rev 54:266–292

    CAS  Google Scholar 

  29. Jones EW, Webb GC, Hitler MA (1995) Biogenesis and function of the yeast vacuole. In: The Molecular and Cellular Biology of the Yeast Saccharomyces: Cell cycle and cell biology. Cold Spring Harbor Laboratory Press. doi: 10.1101/087969364.21C.363

  30. Kowman BJ, Abreu S, Margolles-Clark E, Draskovic M, Bowman EJ (2011) Role of four calcium transport proteins, encoded by nca-1, nca-2, nca-3, and cax, in maintaining intracellular calcium levels in Neurospora crassa. Eucariotic Cell 10(5):654–661

    Article  Google Scholar 

  31. Mannazzu I (1997) Vanadium affects vacuolation and phosphate metabolism in Hansenula polymorpha. FEMS Microbiol Lett 147:23–28. doi:10.1016/S0378-1097(96)00497-1

    Article  CAS  Google Scholar 

  32. Richards A, Veses V, Gow NAR (2010) Vacuole dynamics in fungi. Fungal Biol Rev 24:93–105. doi:10.1016/j.fbr.2010.04.002

    Article  Google Scholar 

  33. Giorgetti M, Berrettoni M, Passerini S, Smyrl WH (2002) Absorption of polarized X-rays by V2O5-based cathodes for lithium batteries: an application. Electrochim Acta 47:3163–3169

    Article  CAS  Google Scholar 

  34. Movasaghi Z, Rehman S, Rehman IU (2007) Raman Spectroscopy of biological tissues. Appl Spectrosc Rev 42:493–541

    Article  CAS  Google Scholar 

  35. De Gussem K, Vandenabeele P, Verbeken A, Moens L (2005) Raman spectroscopic study of Lactarius spores (Russulales, Fungi). Spectrochim Acta A 61:2896–2908

    Article  Google Scholar 

  36. Sujith A, Itoh T, Abe H, Yoshida K-i, Kiran MS, Biju V, Ishikawa M (2009) Imaging the cell wall of living single yeast cells using surface-enhanced Raman spectroscopy. Anal Bioanal Chem 394:1803–1809

    Article  CAS  Google Scholar 

  37. Zhang K, Geissler A, Fischer S, Brendler E, Bäucker E (2012) Solid-state spectroscopic characterization of α-chitins deacetylated in homogeneous solutions. J Phys Chem B 116:4584–4592

    Article  CAS  Google Scholar 

  38. Bednarova L, Palacky J, Bauerova V, Hruskova-Heidingsfeldova O, Pichova I, Mojzes P (2012) Raman microspectroscopy of the yeast vacuoles. Spectrosc Int J 27:503–507. doi:10.1155/2012/746597

    Article  CAS  Google Scholar 

  39. Ribeiro ACF, Valente AJM, Lobo VMM, Azevedo EFG, Amado AM, da Costa AMA, Ramos ML, Burrows HD (2004) Interaction of vanadates with carbohydrates in aqueous solutions. J Mol Struct 703:93–101

    Article  CAS  Google Scholar 

  40. Bronkema JL, Bell AT (2008) An investigation of the reduction and reoxidation of isolated vanadate sites supported on MCM-48. Catal Lett 122:1–8

    Article  CAS  Google Scholar 

  41. Amado AM, Aureliano M, Ribeiro-Claro PJA, Teixeira-Dias JC (1993) Combined Raman and 51V NMR spectroscopic study of vanadium (V) Oligomerization in aqueous alkaline solutions. J Raman Spectrosc 24:699–703

    Article  CAS  Google Scholar 

  42. Butler A, Danzitz MJ, Eckert H (1987) Vanadium-51 NMR as a probe of metal-ion binding in metalloproteins. J Am Chem Soc 109:1864–1865

    Article  CAS  Google Scholar 

  43. Vilter H, Rehder D (1987) 51V NMR Investigation of a vanadate(V)-dependent peroxidase from ascophyllum nodosum (L.) Le Jol. Inorg Chim Acta 136:L7–L10

    Article  CAS  Google Scholar 

  44. Barriga C, Jones W, Malet P, Rives V, Ulibarri MA (1998) Synthesis and characterization of polyoxovanadate-pillared Zn-Al layered double hydroxides: An X-ray absorption and diffraction. Study Inorg Chem 37:1812–1820

    Article  CAS  Google Scholar 

  45. Ferrer EG, Bosch A, Yantornob OJ, Barana EJ (2008) A spectroscopy approach for the study of the interactions of bioactive vanadium species with bovine serum albumin. Bioorg Med Chem 16:3878–3886

    Article  CAS  Google Scholar 

  46. Duguid J, Bloomfield VA, Benevides AJ, Thomas GJ Jr (1993) Raman Spectroscopy of DNA-Metal complexes I Interactions and conformational effects of the divalent cations: Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Pd, and Cd. Biophys J 65:1916–1928

    Article  CAS  Google Scholar 

  47. Duguid JG, Bloomfield VA, Benevides JM, Thomas GJ Jr (1995) Raman Spectroscopy of DNA-Metal complexes.I. The thermal denaturation of DNA in the presence of Sr2+, Ba2+, Mg2+, Ca2+, Mn2+, Co2+, Ni2+, and Cd2+. Biophys J 69:2623–2641

    Article  CAS  Google Scholar 

  48. Langlais M, Tajmir-Riahi HA, Savoie R (1990) Raman Spectroscopic Study of the Effects of Ca2+, Mg2+, Zn2+, and Cd2+ Ions on Calf Thymus DNA: Binding sites and conformational Changes. Biopolymers 30:743–752

    Article  CAS  Google Scholar 

  49. Palaniappan PLRM, Pramod KS (2011) Raman spectroscopic investigation on the microenvironment of the liver tissues of Zebrafish (Danio rerio) due to titanium dioxide exposure. Vib Spectrosc 56:146–153

    Article  CAS  Google Scholar 

  50. Han C, Cui B, Qu J (2009) Comparison of vanadium-rich activity of three species fungi of basidiomycetes. Biol Trace Elem Res 127:278–283. doi:10.1007/s12011-008-8246-0

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Swiss Light Source (SLS) facility for beam time allocation (Proposal Id 20131280) and excellent working conditions. This work was supported by the Grants of Ministry of Education and Science of Republic of Serbia: OI-173040 and OI-173028 (in part). TD was founded by ALBA Ih-house research grant “X-ray imaging of the protein aggregates induced by nanoparticles in vitro”. The authors thank Dr Vesna Rakic for DSC measurements and Nenad Stevic for technical assistance during ICP–OES measurements.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Žižić.

Additional information

Milan Žižić and Tanja Dučić contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Žižić, M., Dučić, T., Grolimund, D. et al. X-ray absorption near-edge structure micro-spectroscopy study of vanadium speciation in Phycomyces blakesleeanus mycelium. Anal Bioanal Chem 407, 7487–7496 (2015). https://doi.org/10.1007/s00216-015-8916-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8916-7

Keywords

Navigation