Skip to main content
Log in

An Investigation of the Reduction and Reoxidation of Isolated Vanadate Sites Supported on MCM-48

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The reduction and subsequent reoxidation of isolated vanadate species supported on silica was investigated using temperature-programmed reduction and oxidation, along with in-situ XANES and Raman spectroscopy. Approximately 70–80% of the vanadium was reduced to V3+ after reduction in H2 at temperatures up to 923 K. Upon reduction, the vanadyl oxygen was removed and the three remaining V–O bonds are lengthened by 0.2 Å. The vanadate species are rapidly reoxidized when exposed to O2, with the amount of oxygen uptake matching well with the amount removed during reduction. In-situ Raman spectroscopy during reoxidation in 18O2 showed that significant scrambling occurs between gas phase oxygen and surface oxygen species during the reoxidation of the vanadate species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Deo G, Wachs IE (1994) J Catal 146:323

    Article  CAS  Google Scholar 

  2. Wachs IE, Jehng JM, Deo G, Wechkuysen BM, Guliants VV, Benzinger JB, Sundaresan SJ (1997) J Catal 170:75

    Article  CAS  Google Scholar 

  3. Olthof B, Khodakov J, Bell AT, Iglesia E (2000) J Phys Chem B 104:1516

    Article  CAS  Google Scholar 

  4. Burcham LJ, Deo G, Gao X, Wachs IE (2000) Top Catal 11/12:85

    Article  CAS  Google Scholar 

  5. Wang C-B, Deo G, Wachs IE (1998) J Catal 178:640

    Article  CAS  Google Scholar 

  6. Bronkema JL, Bell AT (2007) J Phys Chem C 111:420

    Article  CAS  Google Scholar 

  7. Kanervo JM, Harlin ME, Krause AOI, Bañares MA (2003) Catal Today 78:171

    Article  CAS  Google Scholar 

  8. Koranne MM, Goodwin JG, Marcelin G (1994) J Catal 148:369

    Article  CAS  Google Scholar 

  9. Nag NK, Massoth FE (1990) J Catal 124:127

    Article  CAS  Google Scholar 

  10. Argyle MD, Chen K, Resini C, Krebs C, Bell AT, Iglesia E (2004) J Phys Chem B 108:2345

    Article  CAS  Google Scholar 

  11. Morey MS, Davison A, Stucky GD (1998) J Por Mat 5:195

    Article  CAS  Google Scholar 

  12. Huo Q, Margolese DE, Stucky GD (1996) Chem Mater 8:1147

    Article  CAS  Google Scholar 

  13. Jentoft RE, Deutsch SE, Gates BC (1996) Rev Sci Instrum 67:2111

    Article  CAS  Google Scholar 

  14. Newville M (2001) J Synchrotron Radiat 8:322

    Article  CAS  Google Scholar 

  15. Ravel B, Newville M (2005) J Synchrotron Radiat 12:537

    Article  CAS  Google Scholar 

  16. Goodrow A, Bell AT (2007) J Phys Chem C 111:14753

    Article  CAS  Google Scholar 

  17. Xie S, Iglesia E, Bell AT (2000) Langmuir 16:7162

    Article  CAS  Google Scholar 

  18. Ohler N, Bell AT (2005) J Phys Chem B 109:23419

    Article  CAS  Google Scholar 

  19. Skuja L, Güttler B (1996) Phys Rev Lett 77:2093; Orellana W, da Silva AJR, Fazzio A (2001) Phys Rev Lett 87:155901; Bongiorno A, Pasquarello A (2002) Phys Rev Lett 88:125901; Hoshino T, Hata M, Neya S, Nishioka Y, Watanabe T, Tatsumura K, Ohdomari I (2003) Jpn J Appl Phys Part 1 42:6535; Tatsumura K, Shimura T, Mishima E, Kawamura K, Yamasaki D, Yamamoto H, Watanabe T, Umeno M, Ohdomari I (2005) Phys Rev B 72:045205

  20. Hamann DR (1998) Phys Rev Lett 81:3447; Ng KO, Vanderbilt D (1999) Phys Rev B 59:10132; Hoshino T, Hata M, Nishioka Y, Watanabe T, Tatsumura K, Ohdamari I (2003) Jpn J Appl Phys Part 1 42:3560

Download references

Acknowledgments

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Science Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis T. Bell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bronkema, J.L., Bell, A.T. An Investigation of the Reduction and Reoxidation of Isolated Vanadate Sites Supported on MCM-48. Catal Lett 122, 1–8 (2008). https://doi.org/10.1007/s10562-007-9382-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-007-9382-4

Keywords

Navigation