Skip to main content

Advertisement

Log in

In-depth LC-MS/MS analysis of the chicken ovarian cancer proteome reveals conserved and novel differentially regulated proteins in humans

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Ovarian cancer (OVC) remains the most lethal gynecological malignancy in the world due to the combined lack of early-stage diagnostics and effective therapeutic strategies. The development and application of advanced proteomics technology and new experimental models has created unique opportunities for translational studies. In this study, we investigated the ovarian cancer proteome of the chicken, an emerging experimental model of OVC that develops ovarian tumors spontaneously. Matched plasma, ovary, and oviduct tissue biospecimens derived from healthy, early-stage OVC, and late-stage OVC birds were quantitatively characterized by label-free proteomics. Over 2600 proteins were identified in this study, 348 of which were differentially expressed by more than twofold (p ≤ 0.05) in early- and late-stage ovarian tumor tissue specimens relative to healthy ovarian tissues. Several of the 348 proteins are known to be differentially regulated in human cancers including B2M, CLDN3, EPCAM, PIGR, S100A6, S100A9, S100A11, and TPD52. Of particular interest was ovostatin 2 (OVOS2), a novel 165-kDa protease inhibitor found to be strongly upregulated in chicken ovarian tumors (p = 0.0005) and matched plasma (p = 0.003). Indeed, RT-quantitative PCR and Western blot analysis demonstrated that OVOS2 mRNA and protein were also upregulated in multiple human OVC cell lines compared to normal ovarian epithelia (NOE) cells and immunohistochemical staining confirmed overexpression of OVOS2 in primary human ovarian cancers relative to non-cancerous tissues. Collectively, these data provide the first evidence for involvement of OVOS2 in the pathogenesis of both chicken and human ovarian cancer.

Translational workflow for the LC-MS/MS identification of novel differentially expressed proteins such as ovostatin 2 (OVOS2) in the chicken followed by targeted analysis in humans

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bast RC, Hennessy B, Mills GB (2009) The biology of ovarian cancer: new opportunities for translation. Nat Rev Cancer 9:415–428

    Article  CAS  Google Scholar 

  2. American Cancer Society (2015) Cancer Facts & Figures 2015. American Cancer Society, Atlanta

  3. Williams TI, Toups KL, Saggese DA, Kalli KR, Cliby WA, Muddiman DC (2007) Epithelial ovarian cancer: disease etiology, treatment, detection, and investigational gene, metabolite, and protein biomarkers. J Proteome Res 6:2936–2962

    Article  CAS  Google Scholar 

  4. Cho KR, Shih Ie M (2009) Ovarian cancer. Annu Rev Pathol 4:287–313

    Article  CAS  Google Scholar 

  5. Vanderhyden BC, Shaw TJ, Ethier JF (2003) Animal models of ovarian cancer. Reprod Biol Endocrinol 1:1–11

    Article  Google Scholar 

  6. Garson K, Shaw TJ, Clark KV, Yao DS, Vanderhyden BC (2005) Models of ovarian cancer—are we there yet? Mol Cell Endocrinol 239:15–26

    Article  CAS  Google Scholar 

  7. Johnson PA, Giles JR (2013) The hen as a model of ovarian cancer. Nat Rev Cancer 13:432–436

    Article  CAS  Google Scholar 

  8. Hawkridge AM (2014) The chicken model of spontaneous ovarian cancer. Proteomics Clin Appl 8:689–699

    Article  CAS  Google Scholar 

  9. Fredrickson TN (1987) Ovarian tumors of the hen. Environ Health Perspect 73:35–51

    Article  CAS  Google Scholar 

  10. Fathalla MF (1971) Incessant ovulation—a factor in ovarian neoplasia? Lancet 2:163

    Article  CAS  Google Scholar 

  11. Jackson E, Anderson K, Ashwell C, Petitte J, Mozdziak PE (2007) CA125 expression in spontaneous ovarian adenocarcinomas from laying hens. Gynecol Oncol 104:192–198

    Article  CAS  Google Scholar 

  12. Hakim AA, Barry CP, Barnes HJ, Anderson KE, Petitte J, Whitaker R, Lancaster JM, Wenham RM, Carver DK, Turbov J, Berchuck A, Kopelovich L, Rodriguez GC (2009) Ovarian adenocarcinomas in the laying hen and women share similar alterations in p53, ras, and HER-2/neu. Cancer Prev Res 2:114–121

    Article  CAS  Google Scholar 

  13. Ansenberger K, Zhuge Y, Lagman JA, Richards C, Barua A, Bahr JM, Hales DB (2009) E-cadherin expression in ovarian cancer in the laying hen, Gallus domesticus, compared to human ovarian cancer. Gynecol Oncol 113:362–369

    Article  CAS  Google Scholar 

  14. Gonzalez Bosquet J, Peedicayil A, Maguire J, Chien J, Rodriguez GC, Whitaker R, Petitte JN, Anderson KE, Barnes HJ, Shridhar V, Cliby WA (2011) Comparison of gene expression patterns between avian and human ovarian cancers. Gynecol Oncol 120:256–264

    Article  CAS  Google Scholar 

  15. Hawkridge AM, Muddiman DC (2009) Mass spectrometry–based biomarker discovery: toward a global proteome index of individuality. Annu Rev Anal Chem 2:265–277

    Article  CAS  Google Scholar 

  16. Hawkridge AM, Wysocky RB, Petitte JN, Anderson KE, Mozdziak PE, Fletcher OJ, Horowitz JM, Muddiman DC (2010) Measuring the intra-individual variability of the plasma proteome in the chicken model of spontaneous ovarian adenocarcinoma. Anal Bioanal Chem 398:737–749

    Article  CAS  Google Scholar 

  17. Andrews Kingon GL, Petitte JN, Muddiman DC, Hawkridge AM (2013) Multi-peptide nLC-PC-IDMS-SRM-based assay for the quantification of biomarkers in the chicken ovarian cancer model. Methods 61:323–330

    Article  CAS  Google Scholar 

  18. Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins from silver-staining polyacrylamide gels. Anal Chem 68:850–858

    Article  CAS  Google Scholar 

  19. Andrews GL, Shuford CM, Burnett JC Jr, Hawkridge AM, Muddiman DC (2009) Coupling of a vented column with splitless nanoRPLC-ESI-MS for the improved separation and detection of brain natriuretic peptide-32 and its proteolytic peptides. J Chromatogr B Anal Technol Biomed Life Sci 877:948–954

    Article  CAS  Google Scholar 

  20. Nesvizhskii AI, Keller A, Kolker REA (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75:4646–4658

    Article  CAS  Google Scholar 

  21. Keller A, Nesvizhskii AI, Kolker E, Aebersold R (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74:5383–5392

    Article  CAS  Google Scholar 

  22. Weatherly DB, Atwood JA 3rd, Minning TA, Cavola C, Tarleton RL, Orlando R (2005) A Heuristic method for assigning a false-discovery rate for protein identifications from Mascot database search results. Mol Cell Proteomics 4:762–772

    Article  CAS  Google Scholar 

  23. Zybailov B, Mosley AL, Sardiu ME, Coleman MK, Florens L, Washburn MP (2006) Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae research articles. J Proteome Res 5:2339–2347

    Article  CAS  Google Scholar 

  24. Teves ME, Zhang Z, Costanzo RM, Henderson SC, Corwin FD, Zweit J, Sundaresan G, Subler M, Salloum FN, Rubin BK, Strauss JF 3rd (2013) Sperm-associated antigen-17 gene is essential for motile cilia function and neonatal survival. Am J Respir Cell Mol Biol 48:765–772

    Article  CAS  Google Scholar 

  25. Wu J, Mukherjee A, Lebman DA, Fang X (2012) Gene expression of the lysophosphatidic acid receptor 1 is a target of transforming growth factor beta. Oncogene 32(26):3198–3206

    Article  Google Scholar 

  26. Fang X, Yu S, Bast RC, Liu S, Xu HJ, Hu SX, LaPushin R, Claret FX, Aggarwal BB, Lu Y, Mills GB (2004) Mechanisms for lysophosphatidic acid-induced cytokine production in ovarian cancer cells. J Biol Chem 279:9653–9661

    Article  CAS  Google Scholar 

  27. Liu HB, Sadygov RG, Yates JR (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76:4193–4201

    Article  CAS  Google Scholar 

  28. Gokce E, Shuford CM, Franck WL, Dean RA, Muddiman DC (2011) Evaluation of normalization methods on GeLC-MS/MS label-free spectral counting data to correct for variation during proteomic workflows. J Am Soc Mass Spectrom 22(12):2199–2208

    Article  CAS  Google Scholar 

  29. Polanski M, Anderson NL (2007) A list of candidate cancer biomarkers for targeted proteomics. Biomark Insights 1:1–48

    Google Scholar 

  30. The human protein atlas. http://www.proteinatlas.org/.

  31. Cancer Genome Atlas Research N (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474:609–615

    Article  Google Scholar 

  32. Emmanuel C, Gava N, Kennedy C, Balleine RL, Sharma R, Wain G, Brand A, Hogg R, Etemadmoghadam D, George J, Birrer MJ, Clarke CL, Chenevix-Trench G, Bowtell DDL, Harnett PR, deFazio A (2011) Comparison of expression profiles in ovarian epithelium in vivo and ovarian cancer identifies novel candidate genes involved in disease pathogenesis. PLoS One 6(3):e17617

    Article  CAS  Google Scholar 

  33. Abbas AK, Lichtman AH (2003) Cellular and Molecular Immunology, 5 ed. Elsevier Saunders, Philadelphia, PA, p 576

  34. Li K, Du H, Lian X, Yang S, Chai D, Wang C, Yang R, Chen X (2014) Characterization of β2-microglobulin expression in different types of breast cancer. BMC Cancer 14:750

    Article  Google Scholar 

  35. Restifo NP, Marincola FM, Kawakami Y, Taubenberger J, Yannelli JF, Rosenberg SA (1996) Loss of functional B2-microglobulin in metastatic melanomas from five different patients receiving immunotherapy. J Natl Cancer Inst 88(2):100–108

    Article  CAS  Google Scholar 

  36. Tsimberidou AM, Kantarjian HM, Wen S, O’Brien S, Cortes J, Wierda WG, Koller C, Pierce S, Brandt M, Freireich EJ, Keating MJ, Estey EH (2008) The prognostic significance of serum β2 microglobulin levels in acute myeloid leukemia and prognostic scores predicting survival: analysis of 1,180 patients. Clin Cancer Res 14:721–730

    Article  CAS  Google Scholar 

  37. Ware Miller R, Smith A, DeSimone CP, Seamon L, Goodrich S, Podzielinski I, Sokoll L, van Nagell JR, Zhang Z, Ueland FR (2011) Performance of the American College of Obstetricians and Gynecologists’ ovarian tumor referral guidelines with a multivariate index assay. Obstet Gynecol 117:1298–1306

    Article  Google Scholar 

  38. Yurkovetsky Z, Skates S, Lomakin A, Nolen B, Pulsipher T, Modugno F, Marks J, Godwin A, Gorelik E, Jacobs I, Menon U, Lu K, Badgwell D, Bast RC, Lokshin AE (2010) Development of a multimarker assay for early detection of ovarian cancer. J Clin Oncol 28:2159–2166

    Article  Google Scholar 

  39. Honda H, Pazin MJ, D’Souza T, Ji H, Morin PJ (2007) Regulation of the CLDN3 gene in ovarian cancer cells. Cancer Biol Ther 6:1733–1742

    Article  CAS  Google Scholar 

  40. Rangel LB, Agarwal R, Souza TD, Pizer ES, Alo PL, Lancaster WD, Gregoire L, Schwartz DR, Cho KR (2003) Tight junction proteins claudin-3 and claudin-4 are frequently overexpressed in ovarian cancer but not in ovarian cystadenomas. Clin Cancer Res 9(7):2567–2575

    CAS  Google Scholar 

  41. Ng VY, Ang SN, Chan JX, Choo ABH (2010) Characterization of epithelial cell adhesion molecule as a surface marker on undifferentiated human embryonic stem cells. Stem Cells 28:29–35

    Article  CAS  Google Scholar 

  42. Lu T-Y, Lu R-M, Liao M-Y, Yu J, Chung C-H, Kao C-F, Wu H-C (2010) Epithelial cell adhesion molecule regulation is associated with the maintenance of the undifferentiated phenotype of human embryonic stem cells. J Biol Chem 285:8719–8732

    Article  CAS  Google Scholar 

  43. Münz M, Kieu C, Mack B, Schmitt B, Zeidler R, Gires O (2004) The carcinoma-associated antigen EpCAM upregulates c-myc and induces cell proliferation. Oncogene 23:5748–5758

    Article  Google Scholar 

  44. Wei BR, Hoover SB, Ross MM, Zhou W, Meani F, Edwards JB, Spehalski EI, Risinger JI, Alvord WG, Quinones OA, Belluco C, Martella L, Campagnutta E, Ravaggi A, Dai RM, Goldsmith PK, Woolard KD, Pecorelli S, Liotta LA, Petricoin EF, Simpson RM (2009) Serum S100A6 concentration predicts peritoneal tumor burden in mice with epithelial ovarian cancer and is associated with advanced stage in patients. PLoS One 4, e7670

    Article  Google Scholar 

  45. Byrne J, Frost S, Chen Y, Bright RK (2014) Tumor protein D52 (TPD52) and cancer-oncogene understudy or understudied oncogene? Tumour Biol 52:7369–7382

    Article  Google Scholar 

  46. Robinson DS, Monsey JB (1971) Studies on the composition of egg-white ovomucin. Biochem J 121:537–547

    Article  CAS  Google Scholar 

  47. Reid CJ, Harris A (1998) Developmental expression of mucin genes in the human gastrointestinal system. Gut 42:220–226

    Article  CAS  Google Scholar 

  48. Berger JT, Voynow JA, Peters KW, Rose MC (1999) Respiratory carcinoma cell lines. MUC genes and glycoconjugates. Am J Respir Cell Mol Biol 20:500–510

    Article  CAS  Google Scholar 

  49. Sylvester PA, Myerscough N, Warren BF, Carlstedt I, Corfield AP, Durdey P, Thomas MG (2001) Differential expression of the chromosome 11 mucin genes in colorectal cancer. J Pathol 195:327–335

    Article  CAS  Google Scholar 

  50. Tsukashita S, Kushima R, Bamba M, Sugihara H, Hattori T (2001) MUC gene expression and histogenesis of adenocarcinoma of the stomach. Int J Cancer 94:166–170

    Article  CAS  Google Scholar 

  51. Stewart CJ, Tsukamoto T, Cooke B, Leung YC, Hammond IG (2006) Ovarian mucinous tumour arising in mature cystic teratoma and associated with pseudomyxoma peritonei: report of two cases and comparison with ovarian involvement by low-grade appendiceal mucinous tumour. Pathology 38:534–538

    Article  CAS  Google Scholar 

  52. Fazzari C, Fedele F, Pizzi G, Crisafulli C, Parisi A, Caruso RA (2008) Krukenberg tumour of the ovary: a case report with light microscopy, immunohistochemistry and electron microscopy study. Anticancer Res 28:1417–1420

    CAS  Google Scholar 

  53. Black S, Kushner I, Samols D (2004) C-reactive protein. J Biol Chem 279:48487–48490

    Article  CAS  Google Scholar 

  54. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    Article  CAS  Google Scholar 

  55. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444

    Article  CAS  Google Scholar 

  56. Ogata Y, Heppelmann CJ, Charlesworth MC, Madden BJ, Miller MN, Kalli KR, Cilby WA, Bergen HR 3rd, Saggese DA, Muddiman DC (2006) Elevated levels of phosphorylated fibrinogen-alpha-isoforms and differential expression of other post-translationally modified proteins in the plasma of ovarian cancer patients. J Proteome Res 5:3318–3325

    Article  CAS  Google Scholar 

  57. Williams DK, Muddiman DC (2009) Absolute quantification of C-reactive protein in human plasma derived from patients with epithelial ovarian cancer utilizing protein cleavage isotope dilution mass spectrometry. J Proteome Res 8:1085–1090

    Article  CAS  Google Scholar 

  58. Rawlings ND, Waller M, Barrett AJ, Bateman A (2014) MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 42:D503–D509

    Article  CAS  Google Scholar 

  59. Miller Feeney REHT (1966) The physical and chemical properties of an immunologically cross-reactive protein from avian egg whites. Biochemistry 5:952–958

    Article  Google Scholar 

  60. Nagase H, Harris ED, Woessner JF, Brew K (1983) Ovostatin—a novel proteinase-inhibitor from chicken egg-white 1. purification, physicochemical properties, and tissue distribution of ovostatin. J Biol Chem 258:7481–7489

    CAS  Google Scholar 

  61. Nielsen KL, Sottrup-Jensen L (1993) Evidence from sequence analysis that hen egg-white ovomacroglobulin (ovostatin) is devoid of an internal beta-Cys-gamma-Glu thiol ester. Biochim Biophys Acta 1162:230–232

    Article  CAS  Google Scholar 

  62. Nielsen KL, Sottrup-Jensen L, Nagase H, Thogersen HC, Etzerodt M (1994) Amino acid sequence of hen ovomacroglobulin (ovostatin) deduced from cloned cDNA. DNA Seq 5:111–119

    CAS  Google Scholar 

  63. Mann K (2007) The chicken egg white proteome. Proteomics 7:3558–3568

    Article  CAS  Google Scholar 

  64. Lim W, Jeong W, Kim JH, Lee JY, Kim J, Bazer FW, Han JY, Song G (2011) Differential expression of alpha 2 macroglobulin in response to diethylstilbestrol and in ovarian carcinomas in chickens. Reprod Biol Endocrinol 9:137–146

    Article  CAS  Google Scholar 

  65. Scherer SE, Muzny DM, Buhay CJ, Chen R, Cree A, Ding Y, Dugan-Rocha S, Gill R, Gunaratne P, Harris RA, Hawes AC, Hernandez J, Hodgson AV, Hume J, Jackson A, Khan ZM, Kovar-Smith C, Lewis LR, Lozado RJ, Metzker ML, Milosavljevic A, Miner GR, Montgomery KT, Morgan MB, Nazareth LV, Scott G, Sodergren E, Song XZ, Steffen D, Lovering RC, Wheeler DA, Worley KC, Yuan Y, Zhang Z, Adams CQ, Ansari-Lari MA, Ayele M, Brown MJ, Chen G, Chen Z, Clerc-Blankenburg KP, Davis C, Delgado O, Dinh HH, Draper H, Gonzalez-Garay ML, Havlak P, Jackson LR, Jacob LS, Kelly SH, Li L, Li Z, Liu J, Liu W, Lu J, Maheshwari M, Nguyen BV, Okwuonu GO, Pasternak S, Perez LM, Plopper FJ, Santibanez J, Shen H, Tabor PE, Verduzco D, Waldron L, Wang Q, Williams GA, Zhang J, Zhou J, Allen CC, Amin AG, Anyalebechi V, Bailey M, Barbaria JA, Bimage KE, Bryant NP, Burch PE, Burkett CE, Burrell KL, Calderon E, Cardenas V, Carter K, Casias K, Cavazos I, Cavazos SR, Ceasar H, Chacko J, Chan SN, Chavez D, Christopoulos C, Chu J, Cockrell R, Cox CD, Dang M, Dathorne SR, David R, Davis CM, Davy-Carroll L, Deshazo DR, Donlin JE, D’Souza L, Eaves KA, Egan A, Emery-Cohen AJ, Escotto M, Flagg N, Forbes LD, Gabisi AM, Garza M, Hamilton C, Henderson N, Hernandez O, Hines S, Hogues ME, Huang M, Idlebird DG, Johnson R, Jolivet A, Jones S, Kagan R, King LM, Leal B, Lebow H, Lee S, LeVan JM, Lewis LC, London P, Lorensuhewa LM, Loulseged H, Lovett DA, Lucier A, Lucier RL, Ma J, Madu RC, Mapua P, Martindale AD, Martinez E, Massey E, Mawhiney S, Meador MG, Mendez S, Mercado C, Mercado IC, Merritt CE, Miner ZL, Minja E, Mitchell T, Mohabbat F, Mohabbat K, Montgomery B, Moore N, Morris S, Flagg N, Forbes LD, Gabisi AM, Garza M, Hamilton C, Henderson N, Hernandez O, Hines S, Hogues ME, Huang M, Idlebird DG, Johnson R, Jolivet A, Jones S, Kagan R, King LM, Leal B, Lebow H, Lee S, LeVan JM, Lewis LC, London P, Lorensuhewa LM, Loulseged H, Lovett DA, Lucier A, Lucier RL, Ma J, Madu RC, Mapua P, Martindale AD, Martinez E, Massey E, Mawhiney S, Meador MG, Mendez S, Mercado C, Mercado IC, Merritt CE, Miner ZL, Minja E, Mitchell T, Mohabbat F, Mohabbat K, Montgomery B, Moore N, Morris S, Munidasa M, Ngo RN, Nguyen NB, Nickerson E, Nwaokelemeh OO, Nwokenkwo S, Obregon M, Oguh M, Oragunye N, Oviedo RJ, Parish BJ, Parker DN, Parrish J, Parks KL, Paul HA, Payton BA, Perez A, Perrin W, Pickens A, Primus EL, Pu LL, Puazo M, Quiles MM, Quiroz JB, Rabata D, Reeves K, Ruiz SJ, Shao H, Sisson I, Sonaike T, Sorelle RP, Sutton AE, Svatek AF, Svetz LA, Tamerisa KS, Taylor TR, Teague B, Thomas N, Thorn RD, Trejos ZY, Trevino BK, Ukegbu ON, Urban JB, Vasquez LI, Vera VA, Villasana DM, Wang L, Ward-Moore S, Warren JT, Wei X, White F, Williamson AL, Wleczyk R, Wooden HS, Wooden SH, Yen J, Yoon L, Yoon V, Zorrilla SE, Nelson D, Kucherlapati R, Weinstock G, Gibbs RA, Baylor College of Medicine Human Genome Sequencing Center Sequence Production T (2006) The finished DNA sequence of human chromosome 12. Nature 440:346–351

    Article  CAS  Google Scholar 

  66. Normandin K, Peant B, Le Page C, de Ladurantaye M, Ouellet V, Tonin PN, Provencher DM, Mes-Masson AM (2010) Protease inhibitor SERPINA1 expression in epithelial ovarian cancer. Clin Exp Metastasis 27:55–69

    Article  CAS  Google Scholar 

  67. Chambers SK, Gertz RE Jr, Ivins CM, Kacinski BM (1995) The significance of urokinase-type plasminogen activator, its inhibitors, and its receptor in ascites of patients with epithelial ovarian cancer. Cancer 75:1627–1633

    Article  CAS  Google Scholar 

  68. Chambers SK, Ivins CM, Carcangiu ML (1997) Expression of plasminogen activator inhibitor-2 in epithelial ovarian cancer: a favorable prognostic factor related to the actions of CSF-1. Int J Cancer 74:571–575

    Article  CAS  Google Scholar 

  69. Sieben NL, Oosting J, Flanagan AM, Prat J, Roemen GM, Kolkman-Uljee SM, van Eijk R, Cornelisse CJ, Fleuren GJ, van Engeland M (2005) Differential gene expression in ovarian tumors reveals Dusp 4 and Serpina 5 as key regulators for benign behavior of serous borderline tumors. J Clin Oncol 23:7257–7264

    Article  CAS  Google Scholar 

  70. Bauerschlag DO, Habermann M, Weimer J, Meinhold-Heerlein I, Hilpert F, Weigel M, Bauer M, Mundhenke C, Jonat W, Maass N, Schem C (2010) Heterogeneous expression of serine protease inhibitor maspin in ovarian cancer. Anticancer Res 30:2739–2744

    CAS  Google Scholar 

  71. Okamoto T, Niu R, Yamada S (2003) Increased expression of tissue inhibitor of metalloproteinase-2 in clear cell carcinoma of the ovary. Mol Hum Reprod 9:569–575

    Article  CAS  Google Scholar 

  72. Ripley D, Tunuguntla R, Susi L, Chegini N (2006) Expression of matrix metalloproteinase-26 and tissue inhibitors of metalloproteinase-3 and -4 in normal ovary and ovarian carcinoma. Int J Gynecol Cancer 16:1794–1800

    Article  CAS  Google Scholar 

  73. Devoogdt N, Hassanzadeh Ghassabeh G, Zhang J, Brys L, De Baetselier P, Revets H (2003) Secretory leukocyte protease inhibitor promotes the tumorigenic and metastatic potential of cancer cells. Proc Natl Acad Sci U S A 100:5778–5782

    Article  CAS  Google Scholar 

  74. Rasool N, LaRochelle W, Zhong H, Ara G, Cohen J, Kohn EC (2010) Secretory leukocyte protease inhibitor antagonizes paclitaxel in ovarian cancer cells. Clin Cancer Res 16:600–609

    Article  CAS  Google Scholar 

  75. Perets R, Wyant GA, Muto KW, Bijron JG, Poole BB, Chin KT, Chen JYH, Ohman AW, Stepule CD, Kwak S, Karst AM, Hirsch MS, Setlur SR, Crum CP, Dinulescu DM, Drapkin R (2013) Transformation of the fallopian tube secretory epithelium leads to high-grade serous ovarian cancer in Brca, Tp53, Pten models. Cancer Cell 24:751–765

    Article  CAS  Google Scholar 

  76. Dubeau L (2008) The cell of origin of ovarian epithelial tumours. Lancet Oncol 9:1191–1197

    Article  CAS  Google Scholar 

  77. Karst AM, Levanon K, Drapkin R (2011) Modeling high-grade serous ovarian carcinogenesis from the fallopian tube. Proc Natl Acad Sci U S A 108:7547–7552

    Article  CAS  Google Scholar 

  78. Kim J, Coffey DM, Creighton CJ, Yu Z, Hawkins SM, Matzuk MM (2012) High-grade serous ovarian cancer arises from fallopian tube in a mouse model. Proc Natl Acad Sci U S A 109:3921–3926

    Article  CAS  Google Scholar 

  79. Auersperg N, Wong AS, Choi KC, Kang SK, Leung PC (2001) Ovarian surface epithelium: biology, endocrinology, and pathology. Endocr Rev 22:255–288

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by NIH-NCI through award K25CA128666 and VCU (AMH) and R01GM087964 (D.C.M. and A.I.N for tissue proteomics). H.S and X.F were supported, in part, by NIH-NCI R21CA161478. Human ovarian cancer tissues were provided by the VCU Tissue and Data Acquisition and Analysis Core (TDAAC) Facility, supported, in part, with the funding from NIH-NCI Cancer Center Core Support Grant P30 CA016059, as well as through the Dept. of Pathology, School of Medicine, and Massey Cancer Center of Virginia Commonwealth University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam M. Hawkridge.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 474 kb)

ESM 2

(XLSX 1524 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nepomuceno, A.I., Shao, H., Jing, K. et al. In-depth LC-MS/MS analysis of the chicken ovarian cancer proteome reveals conserved and novel differentially regulated proteins in humans. Anal Bioanal Chem 407, 6851–6863 (2015). https://doi.org/10.1007/s00216-015-8862-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8862-4

Keywords

Navigation