Skip to main content
Log in

Electrochemiluminescence DNA sensor array for multiplex detection of biowarfare agents

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Development of a fully automated electrochemiluminescence (ECL) DNA assay for multiplex detection of six biowarfare agents is described. Aminated-DNA capture probes were covalently immobilised on activated-carbon electrodes and subsequently hybridised to target strands. Detection was achieved via a sandwich-type assay after Ru(bpy)3 2+-labelled reporter probes were hybridised to the formed probe–target complexes. The assay was performed in an automated microsystem in a custom-designed ECL detection box with integrated fluidics, electronics, and movable photomultiplier detector. The obtained limits of detection were 0.6–1.2 nmol L−1 for six targets ranging from 50 to 122 base pairs in size, with linear range 1–15 nmol L−1. Non-specific adsorption and cross-reactivity were very low. Detection of six targets on a single chip was achieved with subnanomolar detection limits.

A photo of the electrode array containing 3 × 14 carbon working electrodes (WE), a common carbon counter electrode (CE), and Ag/AgCl reference electrode (RE) (top). The detection scheme is indicated for one WE. First, probe sequences were covalently immobilised on the activated-carbon surface, then target strands were introduced, and finally Ru(bpy)3 2+-labelled reporter strands were introduced to complete the sandwich-type hybridisation assay. The 3D graph shows multiplex detection of six different pathogens on a single chip

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shah J, Wilkins E (2003) Electroanalysis 15:157–167

    Article  CAS  Google Scholar 

  2. Anderson PD, Bokor G (2012) J Pharm Pract 25(5):521–529

    Article  Google Scholar 

  3. Klietmann WF, Ruouff KL (2001) Clin Microbiol Rev 14(2):364–381

    Article  CAS  Google Scholar 

  4. Richter MM (2004) Chem Rev 104:3003–3036

    Article  CAS  Google Scholar 

  5. Bertoncello P, Forster RJ (2009) Biosens Bioelectron 24:3191–3200

    Article  CAS  Google Scholar 

  6. Bertoncello P, Stewart AJ, Lynn D (2014) Anal Bioanal Chem 406:5573–5587

    Article  CAS  Google Scholar 

  7. Muzyka K (2014) Biosens Bioeletron 54:393–407

    Article  CAS  Google Scholar 

  8. Liu Z, Qi W, Xu G (2015) Chem Soc Rev 44:3117–3142

    Article  CAS  Google Scholar 

  9. Blackburn GF, Shag HP, Kenten JH, Leland J, Kamin RA, Link J, Peterman J, Powell MJ, Shah A, Talley DB, Tyagi SK, Wilkins E, Wu T-G, Massey RJ (1991) Clin Chem 37(9):1534–1539

    CAS  Google Scholar 

  10. Miao W, Bard AJ (2003) Anal Chem 75:5825–5834

    Article  CAS  Google Scholar 

  11. Spehar-Délèze A, Schmidt L, Neier R, Kulmala S, de Rooij N, Koudelka-Hep M (2006) Biosens Bioelectron 22:722–729

    Article  Google Scholar 

  12. Firrao G (2005) Int J Environ Anal Chem 85:609–612

    Article  CAS  Google Scholar 

  13. Sardesai NP, Barron JC, Rusling JF (2011) Anal Chem 83:6698–6703

    Article  CAS  Google Scholar 

  14. Wang S, Ge L, Zhang Y, Song X, Li N, Ge S, Yu J (2012) Lab Chip 12:4489–4498

    Article  CAS  Google Scholar 

  15. Guo Z, Hao T, Du S, Chen B, Wang Z, Li X, Wang S (2013) Biosens Bioelectron 44:101–107

    Article  CAS  Google Scholar 

  16. Zhou Z, Xu L, Wu S, Su B (2014) Analyst 139(19):4934–4939

    Article  CAS  Google Scholar 

  17. Wu M-S, Liu Z, Shi H-W, Chen H-Y, Xu J-J (2015) Anal Chem 87(1):530–537

    Article  CAS  Google Scholar 

  18. Molecular probes (2003) Amine-reactive probes, MP 00143

  19. Bard AJ, Faulkner LR (1980) Electrochemical methods: fundamentals and applications. Wiley, Chichester

    Google Scholar 

  20. Von Stackelberg MV, Pilgram M, Toome VZ (1953) Electrochemistry 57:342–350

    CAS  Google Scholar 

  21. Juris A, Balzani V, Barigelletti F, Campagna S, Belser P, Von Zelewsky A (1988) Coord Chem Rev 84:85–277

    Article  CAS  Google Scholar 

  22. McCreery RL (2008) Chem Rev 108:2646–2687

    Article  CAS  Google Scholar 

  23. Millan KM, Mikkelsen SR (1993) Anal Chem 65:2317–2323

    Article  CAS  Google Scholar 

  24. Lucarelli F, Marrazza G, Turner APF, Mascini M (2004) Biosens Bioelectron 19:515–530

    Article  CAS  Google Scholar 

  25. Gooding JJ (2002) Electroanalysis 14:1149–1156

    Article  CAS  Google Scholar 

  26. Steel AB, Herne TM, Tarlov MJ (1998) Anal Chem 70:4670–4677

    Article  CAS  Google Scholar 

  27. Rowe GK, Creager SE (1994) Langmuir 10:1186–1192

    Article  CAS  Google Scholar 

  28. Aqua T, Naaman R, Daube SS (2003) Langmuir 19:10573–10580

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank microfluidic ChipShop (http://www.microfluidic-chipshop.com/) for provision of the fluidic chips.

Funding

The research was funded by the European Community’s Seventh Framework Programme MultisenseChip, ID number: FP7/2007-2013.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anna-Maria Spehar-Délèze or Ciara K. O’Sullivan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1186 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spehar-Délèze, AM., Gransee, R., Martinez-Montequin, S. et al. Electrochemiluminescence DNA sensor array for multiplex detection of biowarfare agents. Anal Bioanal Chem 407, 6657–6667 (2015). https://doi.org/10.1007/s00216-015-8831-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8831-y

Keywords

Navigation