Skip to main content

Electrochemical DNA Biosensors for Bioterrorism Prevention

  • Chapter
  • First Online:
Biosensors for Security and Bioterrorism Applications

Abstract

In the wake of letters containing anthrax spores terrifying the USA and other letters containing unidentified white powders circulating all over the world, the threat of bioterrorism attracts the attention of the general public as well as scientist. Therefore, it is urgent to develop rapid, sensitive, and high-throughput diagnostic methods able to counter attacks of bioterrorism by elucidating the suitable actions that should be implemented to prevent serious epidemic diseases. Numerous such methods are in development but Nucleic Acid Detection is the standard employed for identifying most biological agents that are used in bioterrorism. This method is based on PCR assays via the classical techniques of amplification and fluorescent detection. On the other hand, electrochemical biosensors are promising platforms that could achieve rapid highly sensitive and selective onsite detection of such agents. This chapter will present the recent developments in electrochemical biosensors for preparing DNA detection platforms that could be used to prevent attacks of bioterrorism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hughes JM, Gerberding JL (2002) Anthrax bioterrosim: lessons learned and future directions. Emerg Infect Dis 8:1013–1014

    Article  Google Scholar 

  2. Slack P (1989) The black death: past and present. Trans R Soc Trop Med Hyg 83:461–463

    Article  Google Scholar 

  3. Török TJ, Tauxe RV, Wise RP et al (1997) A large community outbreak of salmonellosis caused by intentional contamination of restaurant salad bars. JAMA 278:389–395

    Article  Google Scholar 

  4. Okumura T, Hisaoka T, Yamada A et al (2005) The Tokyo subway sarin attack-lessons learned. Toxicol Appl Pharmacol 207:S471–S476

    Article  Google Scholar 

  5. Meselson M, Guillemin J, Hugh-Jones M et al (1994) The Sverdlovsk anthrax outbreak of 1979. Science 266:1202–1208

    Article  ADS  Google Scholar 

  6. Broussard LA (2001) biological agents: weapons of warfare and bioterrorism. Molecular Diagnosis 6:323–333

    Article  Google Scholar 

  7. Lim DV, Simpson JM, Kearns EA et al (2005) Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clinic Microbiol Rev 18:583–607

    Article  Google Scholar 

  8. Heller A (1996) Amperometric biosensors. Curr Opin Biotechnol 7:50–54

    Article  Google Scholar 

  9. Dostálek J, Ladd J, Jiang S, Homola J (2006) SPR biosensors for detection of biological and chemical analytes. Chem Sens Biosens 4:177–190

    Article  Google Scholar 

  10. Bunde RL, Jarvi EJ, Rosentreter JJ (1998) Piezoelectric quartz crystal biosensors. Talanta 46:1223–1236

    Article  Google Scholar 

  11. Muhammad-Tahir Z, Alocilja EC (2003) A conductometric biosensor for biosecurity. Biosens Bioelectron 18:813–819

    Article  Google Scholar 

  12. Sattarahmady N, Tondro GH, Gholchin M, Heli H (2015) Gold nanoparticles biosensor of Brucella spp. genomic DNA: visual and spectrophotometric detections. Biochem Eng J 97:1–7

    Article  Google Scholar 

  13. Zhang Y, Tadigadapa S (2004) Calorimetric biosensors with integrated microfluidic channels. Biosens Bioelectron 19:1733–1743

    Article  Google Scholar 

  14. Ramanavicius A, Ramanaviciene A, Malinauskas A (2006) Electrochemical sensors based on conducting polymer-polypyrrole. Electrochim Acta 51:6025–6037

    Article  Google Scholar 

  15. Uygun A (2009) DNA hybridization electrochemical biosensor using a functionalized Polythiophene. Talanta 79:194–198

    Article  Google Scholar 

  16. Chang H, Yuan Y, Shi N et al (2007) Electrochemical DNA biosensor based on conducting polyaniline nanotube array. Anal Chem 79:5111–5115

    Article  Google Scholar 

  17. Wang J, Lin Y (2008) Functionalized carbon nanotubes and nanofibers for biosensing applications. Trends Anal Chem 27:619–626

    Article  ADS  Google Scholar 

  18. Pumera M, Ambrosi A, Bonanni A et al (2010) Graphene for electrochemical sensing and biosensing. Trends Anal Chem 29:954–965

    Article  Google Scholar 

  19. Pingarrón JM, Yanez-Sedeno P, González-Cortés A (2008) Gold nanoparticle-based electrochemical biosensors. Electrochim Acta 53:5848–5866

    Article  Google Scholar 

  20. Li C-Z, Long Y-T, Sutherland T et al (2006) Electronic biosensors based on dna self-assembled monolayer on gold electrodes. In: Xing WL, Cheng J (eds) The Frontiers in Biochip Technology. Springer, China, pp 274–291

    Chapter  Google Scholar 

  21. Miodek A, Castillo G, Hianik Korri-Youssoufi H (2014) Electrochemical aptasensor of cellular prion protein based on modified polypyrrole with redox dendrimers. Biosens Bioelectron 56:104–111

    Article  Google Scholar 

  22. Piro B, Reisberg S, Noel V, Pham MC (2007) Investigations of the steric effect on electrochemical transduction in a quinone-based DNA sensor. Biosens Bioelectron 22:3126–3131

    Article  Google Scholar 

  23. Cannone F, Perrée-Fauvet M, Mahy JP et al (2008) Electrochemical detection of DNA sequences based on metalloporphyrins-polypyrrole towards a multi-detection analysis. Sens Lett 6:570–576

    Article  Google Scholar 

  24. Cass T, Ligler FS (eds) (1998) Immobilized biomolecules in analysis a practical approach. Oxford University Press, New York

    Google Scholar 

  25. Holzinger M, Bouffier L, Villalonga R, Cosnier S (2009) Adamantane/beta-cyclodextrin affinity biosensors based on single-walled carbon nanotubes. Biosens Bioelectron 24:1128–1134

    Article  Google Scholar 

  26. Cosnier S (1999) Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. Biosens Bioelectron 14:443–456

    Article  Google Scholar 

  27. Kandimalla VB, Tripathi VS, Ju H (2006) Immobilization of biomolecules in sol–gels: biological and analytical applications. Crit Rev Anal Chem 36:73–106

    Article  Google Scholar 

  28. Campbell CN, Gal D, Cristler N et al (2002) Enzyme-amplified amperometric sandwich test for RNA and DNA. Anal Chem 74:158–162

    Article  Google Scholar 

  29. Marchand G, Delattre C, Campagnolo R et al (2005) Electrical detection of DNA hybridization based on enzymatic accumulation confined in nanodroplets. Anal Chem 77:5189–5195

    Article  Google Scholar 

  30. Carpini G, Lucarelli F, Marrazza G, Mascini M (2004) Oligonucleotide-modified screen-printed gold electrodes for enzyme-amplified sensing of nucleic acids. Biosens Bioelectron 20:167–175

    Article  Google Scholar 

  31. Hernández-Santos D, Díaz-González M, González-García MB et al (2004) Enzymatic genosensor on streptavidin-modified screen-printed carbon electrodes. Anal Chem 76:6887–6893

    Article  Google Scholar 

  32. Kavanagh P, Leech D (2006) Redox polymer and probe DNA tethered to gold electrodes for enzyme-amplified amperometric detection of DNA hybridization. Anal Chem 78:2710–2716

    Article  Google Scholar 

  33. Farabullini F, Lucarelli F, Palchetti I et al (2007) Disposable electrochemical genosensor for the simultaneous analysis of different bacterial food contaminants. Biosens Bioelectron 22:1544–1549

    Article  Google Scholar 

  34. Wang J (2003) Nanoparticle-based electrochemical DNA detection. Anal Chim Acta 500:247–257

    Article  Google Scholar 

  35. Gao H, Jiang X, Dong YJ et al (2013) Dendrimer-encapsulated copper as a novel oligonucleotides label for sensitive electrochemical stripping detection of DNA hybridization. Biosens Bioelectron 48:210–215

    Article  Google Scholar 

  36. Wang J, Liu G, Jan MM, Zhu Q (2003) Electrochemical detection of DNA hybridization based on carbon-nanotubes loaded with CdS tags. Electrochem Commun 5:1000–1004

    Article  Google Scholar 

  37. Wang J, Li J, Baca AJ et al (2003) Amplified voltammetric detection of DNA hybridization via oxidation of ferrocene caps on gold nanoparticle/streptavidin conjugates. Anal Chem 75:3941–3945

    Article  Google Scholar 

  38. Jin Y, Lu W, Hu J et al (2007) Site-specific DNA cleavage of EcoRI endonuclease probed by electrochemical analysis using ferrocene capped gold nanoparticles as reporter. Electrochem Commun 9:1086–1090

    Article  Google Scholar 

  39. Wang W, Song L, Gao Q et al (2013) Highly sensitive detection of DNA using an electrochemical DNA sensor with thionine-capped DNA/gold nanoparticle conjugates as signal tags. Electrochem Commun 34:18–21

    Article  Google Scholar 

  40. Li XM, Fu PY, Liu JM, Zhang SS (2010) Biosensor for multiplex detection of two DNA target sequences using enzyme-functionalized Au nanoparticles as signal amplification. Anal Chim Acta 673:133–138

    Article  Google Scholar 

  41. Steichen M, Decrem Y, Godfroid E et al (2007) Electrochemical DNA hybridization detection using peptide nucleic acids and [Ru(NH3)6]3+ on gold electrodes. Biosens Bioelectron 22:2237–2243

    Article  Google Scholar 

  42. Castro H, Ana C, Erick GF (2014) Preparation of genosensor for detection of specific DNA sequence of the hepatitis B virus. Appl Surf Sci 314:273–279

    Article  ADS  Google Scholar 

  43. Mascini M, Palchetti I, Marrazza G (2001) DNA electrochemical biosensors. J Anal Chem 369(1):15–22

    Article  Google Scholar 

  44. Yang Y, Wang Z, Yang M et al (2007) Electrical detection of deoxyribonucleic acid hybridization based on carbon-nanotubes/nano zirconium dioxide/chitosan-modified electrodes. Anal Chim Acta 584:268–274

    Article  Google Scholar 

  45. Cai H, Cao X, Jiang Y et al (2003) Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection. Anal Bioanal Chem 375:287–293

    Google Scholar 

  46. Ting BP, Zhang J, Gao Z, Ying JY (2009) A DNA biosensor based on the detection of doxorubicin-conjugated Ag nanoparticle labels using solid-state voltammetry. Biosens Bioelectron 25:282–287

    Article  Google Scholar 

  47. Zhanga Y, Wang J, Xu M (2010) A sensitive DNA biosensor fabricated with gold nanoparticles/poly(p-aminobenzoic acid)/carbon nanotubes modified electrode. Colloids Surf B 75:179–185

    Article  Google Scholar 

  48. Kapuscinski J, Darzynkiewicz Z, Melamed MR (1983) Interactions of acridine orange with nucleic acids properties of complexes of acridine orange with single-stranded ribonucleic acid. Biochem Pharmacol 32:3679–3694

    Article  Google Scholar 

  49. Takenaka S, Yamashita K, Takagi M et al (2000) DNA sensing on a DNA probe-modified electrode using ferrocenyl naphthalene diimide as the electrochemically active ligand. Ana. Chem 72:1334–1341

    Article  Google Scholar 

  50. Millan KM, Mikkelsen SR (1993) Sequence-selective biosensor for DNA based on electroactive hybridization indicators. Anal Chem 65:2317–2323

    Article  Google Scholar 

  51. Millan KM, Saraullo A, Mikkelse SR (1994) Voltammetric DNA biosensor for cystic fibrosis based on a modified carbon paste electrode. Anal Chem 66:2943–2948

    Article  Google Scholar 

  52. Pyle AM, Rehmann JP, Meshoyrer R et al (1989) Mixed-ligand complexes of ruthenium(II): factors governing binding to DNA. J Am Chem Soc 111:3051–3058

    Article  Google Scholar 

  53. Barton JK, Goldberg JM, Kumar CV et al (1986) Binding modes and base specificity of tris(phenanthroline)ruthenium(II) enantiomers with nucleic acids: tuning the stereoselectivity. J Am Chem Soc 108:2081–2088

    Article  Google Scholar 

  54. Hashimoto K, Ito K, Ishimori Y (1994) Sequence-specific gene detection with a gold electrode modified with DNA probes and an electrochemically active dye. Anal Chem 66:3830–3833

    Article  Google Scholar 

  55. Yang IV, Thorp HH (2001) Modification of indium tin oxide electrodes with repeat polynucleotides: electrochemical detection of trinucleotide repeat expansion. Anal Chem 73:5316–5322

    Article  Google Scholar 

  56. Lim SH, Wei J, Lin J (2004) Electrochemical genosensing properties of gold nanoparticle-carbon nanotube hybrid. Chem Phys Lett 400:578–582

    Article  ADS  Google Scholar 

  57. Erdem A, Kerman K, Meric B et al (2000) Novel hybridization indicator methylene blue for the electrochemical detection of short DNA sequences related to the hepatitis B virus. Anal Chim Acta 422:139–149

    Article  Google Scholar 

  58. Sun W, Qi X, Zhang Y et al (2012) Electrochemical DNA biosensor for the detection of Listeria monocytogenes with dendritic nanogold and electrochemical reduced graphene modified carbon ionic liquid electrode. Electrochim Acta 85:145–151

    Article  ADS  Google Scholar 

  59. Li J, Liu Q, Liu Y et al (2005) DNA biosensor based on chitosan film doped with carbon nanotubes. Anal Biochem 346:107–114

    Article  Google Scholar 

  60. Miranda-Castro R, Marchal D, Limoges B et al (2012) Homogeneous electrochemical monitoring of exonuclease III activity and its application to nucleic acid testing by target recycling. Chem Commun 48:8772–8774

    Article  Google Scholar 

  61. Ferguson BS, Buchsbaum SF, Swensen JS et al (2009) Integrated microfluidic electrochemical DNA sensor. Anal Chem 81:6503–6508

    Article  Google Scholar 

  62. Lee JS, Latimer LJP, Reid RS (1993) A cooperative conformational change in duplex DNA induced by zinc and other divalent metal ions. Biochem Cell Biol 71:162–168

    Article  Google Scholar 

  63. Xu Y, Jiang Y, Cai H et al (2004) Electrochemical impedance detection of DNA hybridization based on the formation of M-DNA on polypyrrole/carbon nanotube modified electrode. Anal Chim Acta 516:19–27

    Article  Google Scholar 

  64. Palecek E (1960) Oscillographic polarography of highly polymerized deoxyribonucleic acid. Nature 188:656–657

    Article  ADS  Google Scholar 

  65. Palecek E (1988) Adsorptive transfer stripping voltammetry: determination of nanogram quantities of DNA immobilized at the electrode surface. Anal Biochem 170:421–431

    Article  Google Scholar 

  66. Bollo S, Ferreyra NF, Rivas GA (2007) Electrooxidation of DNA at glassy carbon electrodes modified with multiwall carbon nanotubes dispersed in chitosan. Electroanalysis 19:833–840

    Article  Google Scholar 

  67. Kang D, Zuo X, Yang R et al (2009) Comparing the properties of electrochemical-based DNA sensors employing different redox tags. Anal Chem 81:9109–9113

    Article  Google Scholar 

  68. Ricci F, Zari N, Caprio F et al (2009) Surface chemistry effects on the performance of an electrochemical DNA sensor. Bioelectrochemistry 76:208–213

    Article  Google Scholar 

  69. Xiao Y, Qu X, Plaxco KW, Heeger AJ (2007) Label-free electrochemical detection of DNA in blood serum via target-induced resolution of an electrode-bound DNA pseudoknot. J Am Chem Soc 129:11896–11897

    Article  Google Scholar 

  70. Fan C, Plaxco KW, Heeger AJ (2003) Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proc Natl Acad Sci USA 100:9134–9137

    Article  ADS  Google Scholar 

  71. Anne A, Bouchardon A, Moiroux J (2003) 3’-Ferrocene-labeled oligonucleotide chains end-tethered to gold electrode surfaces: Novel model systems for exploring flexibility of short DNA using cyclic voltammetry. J Am Chem Soc 125:1112–1113

    Article  Google Scholar 

  72. Immoos CE, Lee SJ, Grinstaff MW (2004) DNA-PEG-DNA triblock macromolecules for reagentless DNA detection. J Am Chem Soc 126:10814–10815

    Article  Google Scholar 

  73. Li D, Song S, Fan C (2010) Target-responsive structural switching for nucleic acid-based sensors. Acc Chem Res 43:631–641

    Article  Google Scholar 

  74. Lai RY, Lagally ET, Lee S-H et al (2006) Rapid, sequence-specific detection of unpurified PCR amplicons via a reusable electrochemical sensor. PNAS 103:4017–4021

    Article  ADS  Google Scholar 

  75. Yang W, Lai RY (2011) Langmuir. Comparison of the stem-loop and linear probe-based electrochemical DNA sensors by alternating current voltammetry and cyclic voltammetry 27:14669–14677

    Google Scholar 

  76. Li X-M, Fu P-Y, Liu J-M, Zhang Shu-Sheng (2010) Biosensor for multiplex detection of two DNA target sequences using enzyme-functionalized Au nanoparticules as signal amplification. Analytica Chimica Acta 673:133–138

    Google Scholar 

  77. Yang J, Yang T, Feng Y, Jiao K (2007) A DNA electrochemical sensor based on nanogold-modified poly-2,6-pyridinedicarboxylic acid film and detection of PAT gene fragment. Anal Biochem 365:24–30

    Article  Google Scholar 

  78. Korri-Youssoufi H, Garnier F, Srivastava P et al (1997) Toward bioelectronics: specific DNA recognition based on an oligonucleotide-functionalized polypyrrole. J Am Chem Soc 119:7388–7389

    Article  Google Scholar 

  79. Tlili C, Korri-Youssoufi H, Ponsonnet L et al (2004) Electrochemical impedance probing of DNA hybridisation on oligonucleotide-functionalised polypyrrole. Talanta 68:131–137

    Article  Google Scholar 

  80. Lê HQA, Chebil S, Makrouf B et al (2010) Effect of the size of electrode on electrochemical properties of ferrocene-functionalized polypyrrole towards DNA sensing. Talanta 81:1250–1257

    Article  Google Scholar 

  81. Bouchet A, Chaix C, Marquette CA (2007) Cylinder-shaped conducting polypyrrole for labelless electrochemical multidetection of DNA. Biosens Bioelectron 23:735–740

    Article  Google Scholar 

  82. Miodek A, Mejri N, Gomgnimbou M et al (2015) E-DNA sensor of Mycobacterium tuberculosis based on electrochemical assembly of nanomaterials (MWCNTs/PPy/PAMAM). Anal Chem 87:9257–9264

    Article  Google Scholar 

  83. Lien TTN, Lam TD, An VTH et al (2010) Multi-wall carbon nanotubes (MWCNTs)-doped polypyrrole DNA biosensor for label-free detection of genetically modified organisms by QCM and EIS. Talanta 80:1164–1169

    Article  Google Scholar 

  84. Reisberg S, Piro B, Noel V, Nguyen TD, Nielsen PE, Pham MC (2008) Investigation of the charge effect on the electrochemical transduction in a quinone-based DNA sensor. Electrochim Acta 54:346–351

    Article  Google Scholar 

  85. Reisberg S, Dang LA, Nguyen QA et al (2008) Label-free DNA electrochemical sensor based on a PNA-functionalized conductive polymer. Talanta 76:206–210

    Article  Google Scholar 

  86. Reisberg S, Piro B, Noel V, Pham MC (2006) Selectivity and sensitivity of a reagentless electrochemical DNA sensor studied by square wave voltammetry and fluorescence. Bioelectrochemistry 69:172–179

    Article  Google Scholar 

  87. Zhang QD, Piro B, Noël V et al (2012) An electroactive conjugated oligomer for a direct electrochemical DNA sensor. Synthetic Met 162:1496–1502

    Article  Google Scholar 

  88. Nam J-M, Stoeva SI, Mirkin CA (2004) Bio-bar-code-based DNA detection with PCR-like sensitivity. J Am Chem Soc 126:5932–5933

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafsa Korri-Youssoufi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Korri-Youssoufi, H., Miodek, A., Ghattas, W. (2016). Electrochemical DNA Biosensors for Bioterrorism Prevention. In: Nikolelis, D., Nikoleli, GP. (eds) Biosensors for Security and Bioterrorism Applications. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-28926-7_8

Download citation

Publish with us

Policies and ethics