Analytical and Bioanalytical Chemistry

, Volume 407, Issue 21, pp 6275–6287 | Cite as

The role of direct high-resolution mass spectrometry in foodomics

  • Clara Ibáñez
  • Carolina SimóEmail author
  • Virginia García-Cañas
  • Tanize Acunha
  • Alejandro Cifuentes
Part of the following topical collections:
  1. High-Resolution Mass Spectrometry in Food and Environmental Analysis


Foodomics has been defined as a global discipline in which advanced analytical techniques and bioinformatics are combined to address different questions in food science and nutrition. There is a growing number of works on the development and application of non-targeted omics methods in foodomics, which reflects that this emerging discipline is already considered by the scientific community to be a valuable approach to assess food safety, quality, and traceability as well as for the study of the links between food and health. As a result, there is a clear need for more rapid, high-throughput MS approaches for developing and applying non-targeted studies. Nowadays, direct MS analysis is one of the main choices to achieve high throughput, generating a set of information from the largest possible number of samples in a fast and straightforward way. The use of high- and ultrahigh-resolution MS greatly improves the analytical performance and offers a good combination of selectivity and sensitivity. By using a range of methods for direct sample introduction/desorption/ionization, high-throughput and non-target analysis of a variety of samples can be obtained in a few seconds by HRMS analysis. In this review, a general overview is presented of the main characteristics of direct HRMS-based approaches and their principal applications in foodomics.


Foodomics High-resolution mass spectrometry Direct MS Food analysis Food bioactivity 



This work was supported by AGL2011-29857-C03-01 and AGL2014-53609-P projects (Ministerio de Economía y Competitividad, Spain). T. A. thanks the CAPES Foundation, Ministry of Education of Brazil for her predoctoral scholarship - Proc. N° 1532/13-8.


  1. 1.
    Parliament and Council Regulation No (EC) 178/2002Google Scholar
  2. 2.
    Valdés A, Ibáñez C, Simó C, García-Cañas V (2013) Recent transcriptomics advances and emerging applications in food science. Trac-Trend Anal Chem 52:142–154Google Scholar
  3. 3.
    Valdés A, Simó C, Ibáñez C, García-Cañas V (2013) Foodomics strategies for the analysis of transgenic foods. Trac-Trend Anal Chem 52:2–15Google Scholar
  4. 4.
    Ibáñez C, García-Cañas V, Valdés A, Simó C (2013) Novel MS-based approaches and applications in food metabolomics. Trac-Trend Anal Chem 52:100–111Google Scholar
  5. 5.
    Herrero M, Simó C, García-Cañas V, Ibáñez E, Cifuentes A (2012) Foodomics: MS-based strategies in modern food science and nutrition. Mass Spectrom Rev 31:49–69Google Scholar
  6. 6.
    Ibáñez C, Valdés A, García-Cañas V, Simó C, Celebier M, Rocamora-Reverte L, Gómez-Martínez A, Herrero M, Castro-Puyana M, Segura-Carretero A, Ibáñez E, Ferragut JA, Cifuentes A (2011) Global foodomics strategy to investigate the health benefits of dietary constituents. J Chromatogr A 1248:139–153Google Scholar
  7. 7.
    Valdés A, Simó C, Ibáñez C, Rocamora-Reverte L, Ferragut JA, García-Cañas V, Cifuentes A (2012) Effect of dietary polyphenols on K562 leukemia cells: a foodomics approach. Electrophoresis 33:2314–2327Google Scholar
  8. 8.
    Ibáñez C, Simó C, García-Cañas V, Gómez-Martínez A, Ferragut JA, Cifuentes A (2012) CE/LC-MS multiplatform for broad metabolomic analysis of dietary polyphenols effect on colon cancer cells proliferation. Electrophoresis 33:2328–2336Google Scholar
  9. 9.
    Valdés A, García-Cañas V, Rocamora-Reverte L, Gómez-Martínez A, Ferragut JA, Cifuentes A (2013) Effect of rosemary polyphenols on human colon cancer cells: transcriptomic profiling and functional enrichment analysis. Genes Nutr 8:43–60Google Scholar
  10. 10.
    Valdés A, García-Cañas V, Simó C, Ibáñez C, Micol V, Ferragut JA, Cifuentes A (2014) Comprehensive foodomics study on the mechanisms operating at various molecular levels in cancer cells in response to individual rosemary polyphenols. Anal Chem 86:9807–9815Google Scholar
  11. 11.
    García-Cañas V, Simó C, Herrero M, Ibáñez E, Cifuentes A (2012) Present and future challenges in food analysis: foodomics. Anal Chem 84:10150–10159Google Scholar
  12. 12.
    García-Cañas V, Simó C, Castro-Puyana M, Cifuentes A (2014) Recent advances in the application of capillary electromigration methods for food analysis and foodomics. Electrophoresis 35:147–169Google Scholar
  13. 13.
    Hu Q, Noll RJ, Li H, Makarov A, Hardman M, Cooks RG (2005) The Orbitrap: a new mass spectrometer. J Mass Spectrom 40:430–443Google Scholar
  14. 14.
    Marshall AG, Hendrickson CL (2008) High-resolution mass spectrometers. Annu Rev Anal Chem 1:579–599Google Scholar
  15. 15.
    Kaufmann A (2012) The current role of high-resolution mass spectrometry in food analysis. Anal Bioanal Chem 403:1233–1249Google Scholar
  16. 16.
    Draper J, Lloyd AJ, Goodacre R, Beckmann M (2013) Flow infusion electrospray ionisation mass spectrometry for high throughput, non-targeted metabolite fingerprinting: a review. Metabolomics 9:S4–S29Google Scholar
  17. 17.
    Cooper HJ, Marshall AG (2001) Electrospray ionization Fourier transform mass spectrometric analysis of wine. J Agric Food Chem 49:5710–5718Google Scholar
  18. 18.
    Gougeon RD, Lucio M, Frommberger M, Peyron D, Chassagne D, Alexandre H, Feuillat F, Voilley A, Cayot P, Gebefügi I, Hertkorn N, Schmitt-Kopplin P (2009) The chemodiversity of wines can reveal a metabologeography expression of cooperage oak wood. Proc Natl Acad Sci U S A 106:9174–9179Google Scholar
  19. 19.
    Liger-Belair G, Cilindre C, Gougeon RD, Lucio M, Gebefügi I, Jeandet P, Schmitt-Kopplin P (2009) Unraveling different chemical fingerprints between a champagne wine and its aerosols. Proc Natl Acad Sci U S A 106:16545–16549Google Scholar
  20. 20.
    Villagra E, Santos LS, Vaz BG, Eberlin MN, Laurie F (2012) Varietal discrimination of Chilean wines by direct injection mass spectrometry analysis combined with multivariate statistics. Food Chem 131:692–697Google Scholar
  21. 21.
    Catharino RR, Cunha IBS, Fogac AO, Facco EMP, Godoy HT, Daudt CE, Eberlin MN, Sawaya ACHF (2006) Characterization of must and wine of six varieties of grapes by direct infusion electrospray ionization mass spectrometry. J Mass Spectrom 41:185–190Google Scholar
  22. 22.
    Roullier-Gall C, Boutegrabet L, Gougeon RD, Schmitt-Kopplin P (2014) A grape and wine chemodiversity comparison of different appellations in Burgundy: vintage vs terroir effects. Food Chem 152:100–107Google Scholar
  23. 23.
    Garrett R, Vaz BG, Hovell AMC, Eberlin MN, Rezende CM (2012) Arabica and robusta coffees: identification of major polar compounds and quantification of blends by direct-infusion electrospray ionization-mass spectrometry. J Agric Food Chem 60:4253–4258Google Scholar
  24. 24.
    Goodacre R, Vaidyanathan S, Bianchi G, Kell DB (2002) Metabolic profiling using direct infusion electrospray ionisation mass spectrometry for the characterisation of olive oils. Analyst 127:1457–1462Google Scholar
  25. 25.
    Wu Z, Rodgers RP, Marshall AG (2004) Characterization of vegetable oils: detailed compositional fingerprints derived from electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. J Agric Food Chem 52:5322–5328Google Scholar
  26. 26.
    Proschogo NW, Albertson PL, Bursle J, McConchie CA, Turner AG, Willett GD (2012) Aging effects on macadamia nut oil studied by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. J Agric Food Chem 60:1973–1980Google Scholar
  27. 27.
    González-Dominguez R, García-Barrera T, Gómez-Ariza JL (2012) Iberian ham typification by direct infusion electrospray and photospray ionization mass spectrometry fingerprinting. Rapid Commun Mass Spectrom 26:835–844Google Scholar
  28. 28.
    León C, Rodríguez-Meizoso I, Lucio M, García-Cañas V, Ibáñez E, Schmitt-Kopplin P, Cifuentes A (2009) Metabolomics of transgenic maize combining Fourier transform-ion cyclotron resonance-mass spectrometry, capillary electrophoresis-mass spectrometry and pressurized liquid extraction. J Chromatogr A 1216:7314–7323Google Scholar
  29. 29.
    Ashraf N, Linforth RST, Bealin-Kelly F, Smart K, Taylor AJ (2010) Rapid analysis of selected beer volatiles by atmospheric pressure chemical ionisation-mass spectrometry. Int J Mass Spectrom 294:47–53Google Scholar
  30. 30.
    Van Loon WA, Linssen JP, Boelrijk AE, Burgering MJ, Voragen AG (2005) Real-time flavor release from French fries using atmospheric pressure chemical ionization-mass spectrometry. J Agric Food Chem 53:6438–6442Google Scholar
  31. 31.
    Van Ruth S, Boscaini E, Mayr D, Pugh J, Posthumus M (2003) Evaluation of three gas chromatography and two direct mass spectrometry techniques for aroma analysis of dried red bell peppers. Int J Mass Spectrom 223–224:55–65Google Scholar
  32. 32.
    Hansel A, Jordan A, Holzinger R, Prazeller P, Vogel W, Lindinger W (1995) Int J Mass Spectrom 149–150:609–619Google Scholar
  33. 33.
    Tsachaki M, Linforth RS, Taylor AJ (2009) Aroma release from wines under dynamic conditions. J Agric Food Chem 57:6976–6981Google Scholar
  34. 34.
    Blake RS, Monks PS, Ellis AM (2009) Proton-transfer reaction mass spectrometry. Chem Rev 109:861–896Google Scholar
  35. 35.
    Biasioli F, Gasperi F, Aprea E, Colato L, Boscaini E, Märk TD (2003) Fingerprinting mass spectrometry by PTR-MS: heat treatment vs. pressure treatment of red orange juice-a case study. Int J Mass Spectrom 223–224:343–353Google Scholar
  36. 36.
    Van Ruth SM, Koot A, Akkermans W, Araghipour N, Rozijn M, Baltussen M, Wisthaler A, Märk TD, Frankhuizen R (2008) Butter and butter oil classification by PTR-MS. Eur Food Res Technol 227:307–317Google Scholar
  37. 37.
    Heenan SP, Dufour J-P, Hamid N, Harvey W, Delahunty CM (2009) Characterisation of fresh bread flavour: relationships between sensory characteristics and volatile composition. Food Chem 116:249–257Google Scholar
  38. 38.
    Van Ruth SM, Floris V, Fayoux S (2006) Characterisation of the volatile profiles of infant formulas by proton transfer reaction-mass spectrometry and gas chromatography-mass spectrometry. Food Chem 98:343–350Google Scholar
  39. 39.
    Lindinger C, Labbe D, Pollien P, Rytz A, Juillerat MA, Yeretzian C, Blank I (2008) When machine tastes coffee: instrumental approach to predict the sensory profile of espresso coffee. Anal Chem 80:1574–1581Google Scholar
  40. 40.
    Boscaini E, Mikoviny T, Wisthaler A, Von Hartungen E, Märk TD (2004) Characterization of wine with PTR-MS. Int J Mass Spectrom 239:215–219Google Scholar
  41. 41.
    Spitaler R, Araghipour N, Mikoviny T, Wisthaler A, Via DL, Märk TD (2007) PTR-MS in enology: advances in analytics and data analysis. Int J Mass Spectrom 266:1–7Google Scholar
  42. 42.
    Blake RS, Whyte C, Hughes CO, Ellis AM, Monks PS (2004) Demonstration of proton-transfer reaction time-of-flight mass spectrometry for real-time analysis of trace volatile organic compounds. Anal Chem 76:3841–3845Google Scholar
  43. 43.
    Tanimoto H, Aoki N, Inomata S, Hirokawa J, Sadanaga Y (2007) Development of a PTR-TOFMS instrument for real-time measurements of volatile organic compounds in air. Int J Mass Spectrom 26:1–11Google Scholar
  44. 44.
    Fabris A, Biasioli F, Granitto PM, Aprea E, Cappellin L, Schuhfried E, Soukoulis C, Märk TD, Gasperi F, Endrizzi I (2010) PTR-TOF-MS and data-mining methods for rapid characterisation of agro-industrial samples: influence of milk storage conditions on the volatile compounds profile of Trentingrana cheese. J Mass Spectrom 45:1065–1074Google Scholar
  45. 45.
    Soukoulis C, Aprea E, Biasioli F, Cappellin L, Schuhfried E, Märk TD, Gasperi F (2010) Proton transfer reaction time-of-flight mass spectrometry monitoring of the evolution of volatile compounds during lactic acid fermentation of milk. Rapid Commun Mass Spectrom 24:2127–3134Google Scholar
  46. 46.
    Tsevdou M, Soukoulis C, Cappellin L, Gasperi F, Taoukis PS, Biasioli F (2013) Monitoring the effect of high pressure and transglutaminase treatment of milk on the evolution of flavour compounds during lactic acid fermentation using PTR-ToF-MS. Food Chem 138:2159–2167Google Scholar
  47. 47.
    Masi E, Romani A, Pandolfi C, Heimler D, Mancuso S (2014) PTR-TOF-MS analysis of volatile compounds in olive fruits. J Sci Food Agric. doi: 10.1002/jsfa.6837 Google Scholar
  48. 48.
    Soukoulis C, Cappellin L, Aprea E, Costa F, Viola R, Märk TD, Gasperi F, Biasioli F (2013) PTR-ToF-MS, A novel, rapid, high sensitivity and non-invasive tool to monitor volatile compound release during fruit post-harvest storage: the case study of apple ripening. Food Bioprocess Technol 6:2831–2843Google Scholar
  49. 49.
    Sánchez del Pulgar J, Soukoulis C, Biasioli F, Cappellin L, García C, Gasperi F, Granitto P, Märk TD, Piasentier E, Schuhfried E (2011) Rapid characterization of dry cured ham produced following different PDOs by proton transfer reaction time of flight mass spectrometry (PTR-ToF-MS). Talanta 85:386–393Google Scholar
  50. 50.
    Sánchez del Pulgar J, Soukoulis C, Carrapiso AI, Cappellin L, Granitto P, Aprea E, Romano A, Gasperi F, Biasioli F (2013) Effect of the pig rearing system on the final volatile profile of Iberian dry-cured ham as detected by PTR-ToF-MS. Meat Sci 93:420–428Google Scholar
  51. 51.
    Aprea E, Romano A, Betta E, Biasioli F, Cappellin L, Fanti M, Gasperi F (2015) Volatile compound changes during shelf life of dried Boletus edulis: comparison between SPME-GC-MS and PTR-ToF-MS analysis. J Mass Spectrom 50:56–64Google Scholar
  52. 52.
    Yener S, Romano A, Cappellin L, Märk TD, Sánchez Del Pulgar J, Gasperi F, Navarini L, Biasioli F (2014) PTR-ToF-MS characterisation of roasted coffees (C. arabica) from different geographic origins. J Mass Spectrom 49:929–935Google Scholar
  53. 53.
    Wieland F, Gloess AN, Keller M, Wetzel A, Schenker S, Yeretzian C (2012) Online monitoring of coffee roasting by proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS): towards a real-time process control for a consistent roast profile. Anal Bioanal Chem 402:2531–2543Google Scholar
  54. 54.
    Sánchez-López JA, Zimmermann R, Yeretzian C (2014) Insight into the time-resolved extraction of aroma compounds during espresso coffee preparation: online monitoring by PTR-ToF-MS. Anal Chem 86:11696–11704Google Scholar
  55. 55.
    Heenan S, Soukoulis C, Silcock P, Fabris A, Aprea E, Cappellin L, Märk TD, Gasperi F, Biasioli F (2012) PTR-TOF-MS monitoring of in vitro and in vivo flavour release in cereal bars with varying sugar composition. Food Chem 131:477–484Google Scholar
  56. 56.
    Soukoulis C, Biasioli F, Aprea E, Schuhfried E, Cappellin L, Märk TD, Gasperi F (2012) PTR-TOF-MS analysis for influence of milk base supplementation on texture and headspace concentration of endogenous volatile compounds in yogurt. Food Bioprocess Technol 5:2085–2097Google Scholar
  57. 57.
    Herbig J, Müller M, Schallhart S, Titzmann T, Graus M, Hansel A (2009) On-line breath analysis with PTR-TOF. J Breath Res 3:027004Google Scholar
  58. 58.
    Ajibola OA, Smith D, Španěl P, Ferns GAA (2013) Effects of dietary nutrients on volatile breath metabolites. J Nutr Sci 2, e34. doi: 10.1017/jns.2013.26 Google Scholar
  59. 59.
    Aprea E, Morisco F, Biasioli F, Vitaglione P, Cappellin L, Soukoulis C, Lembo V, Gasperi F, D'Argenio G, Fogliano V, Caporaso N (2012) Analysis of breath by proton transfer reaction time of flight mass spectrometry in rats with steatohepatitis induced by high-fat diet. J Mass Spectrom 47:1098–1103Google Scholar
  60. 60.
    Aprea E, Cappellin L, Gasperi F, Morisco F, Lembo V, Rispo A, Tortora R, Vitaglione P, Caporaso N, Biasioli F (2014) Application of PTR-TOF-MS to investigate metabolites in exhaled breath of patients affected by coeliac disease under gluten free diet. J Chromatogr, B 966:208–213Google Scholar
  61. 61.
    Déléris I, Saint-Eve A, Sémon E, Guillemin H, Guichard E, Souchon I, Le Quéré JL (2013) Comparison of direct mass spectrometry methods for the on-line analysis of volatile compounds in foods. J Mass Spectrom 48:594–607Google Scholar
  62. 62.
    Biasioli F, Gasperi F (2011) PTR-MS monitoring of VOCs and BVOCs in food science and technology. Trac-Trend Anal Chem 7:968–977Google Scholar
  63. 63.
    Sulzer P, Edtbauer A, Hartungen E, Jürschik S, Jordan A, Hanel G, Feil S, Jaksch S, Märk L, Märk TD (2012) From conventional proton-transfer-reaction mass spectrometry (PTR-MS) to universal trace gas analysis. Int J Mass Spectrom 321–322:66–70Google Scholar
  64. 64.
    Vaidyanathan S, Gaskell S, Goodacre R (2006) Matrix-suppressed laser desorption/ionisation mass spectrometry and its suitability for metabolome analyses. Rapid Commun Mass Spectrom 20:1192–1198Google Scholar
  65. 65.
    Edwards JL, Kennedy RT (2005) Metabolomic analysis of eukaryotic tissue and prokaryotes using negative mode MALDI time-of-flight mass spectrometry. Anal Chem 77:2201–2209Google Scholar
  66. 66.
    Miura D, Fujimura Y, Tachibana H, Wariishi H (2010) Highly sensitive matrix-assisted laser desorption ionization-mass spectrometry for high-throughput metabolic profiling. Anal Chem 82:498–504Google Scholar
  67. 67.
    Vaidyanathan S, Jones D, Broadhurst DI, Ellis J, Jenkins T, Dunn WB, Hayes A, Burton N, Oliver SG, Kell DB (2005) A laser desorption ionisation mass spectrometry approach for high throughput metabolomics. Metabolomics 1:243–250Google Scholar
  68. 68.
    Vaidyanathan S, Jones D, Ellis J, Jenkins T, Chong C, Anderson M, Goodacre R (2007) Laser desorption/ionization mass spectrometry on porous silicon for metabolome analyses: influence of surface oxidation. Rapid Commun Mass Spectrom 21:2157–2166Google Scholar
  69. 69.
    Careri M, Elviri L, Mangia A, Zagnoni I, Agrimonti C, Visioli G, Marmiroli N (2003) Analysis of protein profiles of genetically modified potato tubers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 17:479–483Google Scholar
  70. 70.
    Cozzolino R, De Giulio B (2011) Application of ESI and MALDI-TOF MS for triacylglycerols analysis in edible oils. Eur J Lipid Sci Technol 113:160–167Google Scholar
  71. 71.
    Ciarmiello LF, Mazzeo MF, Minasi P, Peluso A, De Luca A, Piccirillo P, Siciliano RA, Carbone V (2014) Analysis of different European hazelnut (Corylus avellana L.) cultivars: authentication, phenotypic features, and phenolic profiles. J Agric Food Chem 62:6236–6246Google Scholar
  72. 72.
    Cozzolino R, Passalacqua S, Salemi S, Malvagna P, Spina E, Garozzo D (2001) Identification of adulteration in milk by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Mass Spectrom 36:1031–1037Google Scholar
  73. 73.
    Nicolau N, Xu Y, Goodacre R (2011) MALDI-MS and multivariate analysis for the detection and quantification of different milk species. Anal Bioanal Chem 399:3491–3502Google Scholar
  74. 74.
    Garcia JS, Sanvido GB, Saraiva SA, Zacca JJ, Cosso RG, Eberlin MN (2012) Bovine milk powder adulteration with vegetable oils or fats revealed by MALDI-QTOF MS. Food Chem 131:722–726Google Scholar
  75. 75.
    Calvano CD, Monopoli A, Loizzo P, Faccia M, Zambonin C (2013) Proteomic approach based on MALDI-TOF MS to detect powdered milk in fresh cow's milk. J Agric Food Chem 61:1609–1617Google Scholar
  76. 76.
    Cunsolo V, Muccilli V, Saletti R, Foti S (2013) MALDI-TOF mass spectrometry for the monitoring of she-donkey's milk contamination or adulteration. J Mass Spectrom 48:148–153Google Scholar
  77. 77.
    Di Girolamo F, Masotti A, Salvatori G, Scapaticci M, Muraca M, Putignani L (2014) A sensitive and effective proteomic approach to identify she-donkey's and goat's milk adulterations by MALDI-TOF MS fingerprinting. Int J Mol Sci 15:13697–13719Google Scholar
  78. 78.
    Sabbadin S, Seraglia R, Allegri G, Bertazzo A, Traldi P (1999) Matrix-assisted laser desorption/ionization mass spectrometry in evaluation of protein profiles of infant formulae. Rapid Commun Mass Spectrom 13:1438–1443Google Scholar
  79. 79.
    Catinella S, Traldi P, Pinelli C, Dallaturca E (1996) Matrix-assisted laser desorption/ionization mass spectrometry: a valid analytical tool in the dairy industry. Rapid Commun Mass Spectrom 10:1123–1127Google Scholar
  80. 80.
    Sedo O, Márová I, Zdráhal Z (2012) Beer fingerprinting by matrix-assisted laser desorption-ionisation-time of flight mass spectrometry. Food Chem 135:473–478Google Scholar
  81. 81.
    Latif S, Pfannstiel J, Makkar HP, Becker K (2013) Amino acid composition, antinutrients and allergens in the peanut protein fraction obtained by an aqueous enzymatic process. Food Chem 136:213–217Google Scholar
  82. 82.
    Cerimedo MSA, Candal RJ, Herrera ML (2014) Physical properties and oxidative status of concentrated-from-fish oils microencapsulated in trehalose/sodium caseinate matrix. Food Bioprocess Tech 7:3536–3547Google Scholar
  83. 83.
    Weston DJ (2010) Ambient ionization mass spectrometry: current understanding of mechanistic theory; analytical performance and application areas. Analyst 135:661–668Google Scholar
  84. 84.
    Harris GA, Galhena AS, Fernández FM (2011) Ambient sampling/ionization mass spectrometry: applications and current trends. Anal Chem 83:4508–4538Google Scholar
  85. 85.
    Monge ME, Harris GA, Dwivedi P, Fernández FM (2013) Mass spectrometry: recent advances in direct open air surface sampling/ionization. Chem Rev 113:2269–2308Google Scholar
  86. 86.
    Takats Z, Wiseman JM, Gologan B, Cooks RG (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306:471–473Google Scholar
  87. 87.
    Jackson AU, Talaty N, Cooks RG, Van Berkel GJ (2007) Salt tolerance of desorption electrospray ionization (DESI). J Am Soc Mass Spectrom 18:2218–2225Google Scholar
  88. 88.
    Douglass KA, Venter AR (2013) Protein analysis by desorption electrospray ionization mass spectrometry and related methods. J Mass Spectrom 48:553–560Google Scholar
  89. 89.
    García-Reyes JF, Jackson AU, Molina-Díaz A, Cooks RG (2009) DESI-MS is demonstrating to be a promising tool in food safety control, for example, in multiresidue analysis of a wide range of agrochemical (insecticides, herbicides, and fungicides), even in fruit surface. Anal Chem 81:820–829Google Scholar
  90. 90.
    Joyce NI, Eady CC, Silcock P, Perry NB, van Klink JW (2013) Fast phenotyping of LFS-silenced (tearless) onions by desorption electrospray ionization mass spectrometry (DESI-MS). J Agric Food Chem 61:1449–1456Google Scholar
  91. 91.
    Hartmanova L, Ranc V, Papouskova B, Bednar P, Havlicek V, Lemr K (2010) Fast profiling of anthocyanins in wine by desorption nano-electrospray ionization mass spectrometry. J Chromatogr A 1217:4223–4228Google Scholar
  92. 92.
    Gerbig S, Takáts Z (2010) Analysis of triglycerides in food items by desorption electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 24:2186–2192Google Scholar
  93. 93.
    Shin YS, Drolet B, Mayer R, Dolence K, Basile F (2007) Desorption electrospray ionization-mass spectrometry of proteins. Anal Chem 79:3514–3518Google Scholar
  94. 94.
    Takats Z, Wiseman JM, Ifa DR, Cooks RG (2008) Desorption electrospray ionization (DESI) analysis of tryptic digests/peptides. CSH Protoc. doi: 10.1101/pdb.prot4993 Google Scholar
  95. 95.
    Takats Z, Wiseman JM, Ifa DR, Cooks RG (2008) Desorption electrospray ionization (DESI) analysis of intact proteins/oligopeptides. CSH Protoc. doi: 10.1101/pdb.prot4992 Google Scholar
  96. 96.
    Montowska M, Rao W, Alexander MR, Tucker GA, Barrett DA (2014) Tryptic digestion coupled with ambient desorption electrospray ionization and liquid extraction surface analysis mass spectrometry enabling identification of skeletal muscle proteins in mixtures and distinguishing between beef, pork, horse, chicken, and turkey meat. Anal Chem 86:4479–4487Google Scholar
  97. 97.
    Liu J, Wang H, Manicke NE, Lin J-M, Cooks RG, Ouyang Z (2010) Development, characterization, and application of paper spray ionization. Anal Chem 82:2463–2471Google Scholar
  98. 98.
    Zhang Z, Cooks RG, Ouyang Z (2012) Paper spray: a simple and efficient means of analysis of different contaminants in foodstuffs. Analyst 137:2556–2558Google Scholar
  99. 99.
    Zhang JI, Li X, Ouyang Z, Cooks RG (2012) Direct analysis of steviol glycosides from stevia leaves by ambient ionization mass spectrometry performed on whole leaves. Analyst 137:3091–3098Google Scholar
  100. 100.
    Cody RB, Laramée JA, Durst HD (2005) Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem 77:2297–2302Google Scholar
  101. 101.
    Hajslova J, Cajka T, Vaclavik L (2011) Challenging applications offered by direct analysis in real time (DART) in food-quality and safety analysis. Trac-Trend Anal Chem 30:204–218Google Scholar
  102. 102.
    Gross JH (2014) Direct analysis in real time - a critical review on DART-MS. Anal Bioanal Chem 406:63–80Google Scholar
  103. 103.
    Farré M, Picó Y, Barceló D (2013) Direct peel monitoring of xenobiotics in fruit by direct analysis in real time coupled to a linear quadrupole ion trap-orbitrap mass spectrometer. Anal Chem 85:638–644Google Scholar
  104. 104.
    Edison SE, Lin LA, Gamble BM, Wong J, Zhang K (2011) Surface swabbing technique for the rapid screening for pesticides using ambient pressure desorption ionization with high-resolution mass spectrometry. Rapid Commun Mass Spectrom 25:127–139Google Scholar
  105. 105.
    Crawford E, Musselman B (2012) Evaluating a direct swabbing method for screening pesticides on fruit and vegetable surfaces using direct analysis in real time (DART) coupled to an exactive benchtop orbitrap mass spectrometer. Anal Bioanal Chem 403:2807–2812Google Scholar
  106. 106.
    Vaclavik L, Capuano E, Gökmen V, Hajslova J (2015) Prediction of acrylamide formation in biscuits based on fingerprint data generated by ambient ionization mass spectrometry employing direct analysis in real time (DART) ion source. Food Chem 173:290–297Google Scholar
  107. 107.
    Vaclavik L, Belkova B, Reblova Z, Riddellova K, Hajslova J (2013) Rapid monitoring of heat-accelerated reactions in vegetable oils using direct analysis in real time ionization coupled with high resolution mass spectrometry. Food Chem 138:2312–2320Google Scholar
  108. 108.
    Vaclavik L, Cajka T, Hrbek V, Hajslova J (2009) Ambient mass spectrometry employing direct analysis in real time (DART) ion source for olive oil quality and authenticity assessment. Anal Chim Acta 645:56–63Google Scholar
  109. 109.
    Hrbek V, Vaclavik L, Elich O, Hajslova J (2014) Authentication of milk and milk-based foods by direct analysis in real time ionization-high resolution mass spectrometry (DART-HRMS) technique: a critical assessment. Food Control 36:138–145Google Scholar
  110. 110.
    Vaclavik L, Hrbek V, Cajka T, Rohlik BA, Pipek P, Hajslova J (2011) Authentication of animal fats using direct analysis in real time (DART) ionization-mass spectrometry and chemometric tools. J Agric Food Chem 59:5919–5926Google Scholar
  111. 111.
    Cajka T, Danhelova H, Zachariasova M, Riddellova K, Hajslova J (2013) Application of direct analysis in real time ionization-mass spectrometry (DART-MS) in chicken meat metabolomics aiming at the retrospective control of feed fraud. Metabolomics 9:545–557Google Scholar
  112. 112.
    Cajka T, Riddellova K, Tomaniova M, Hajslova J (2011) Ambient mass spectrometry employing a DART ion source for metabolomic fingerprinting/profiling: a powerful tool for beer origin recognition. Metabolomics 4:500–508Google Scholar
  113. 113.
    Kim HJ, Baek WS, Jang YP (2011) Identification of ambiguous cubeb fruit by DART-MS-based fingerprinting combined with principal component analysis. Food Chem 129:1305–1310Google Scholar
  114. 114.
    Chernetsova ES, Bromirski M, Scheibner O, Morlock GE (2012) DART-Orbitrap MS: a novel mass spectrometric approach for the identification of phenolic compounds in propolis. Anal Bioanal Chem 403:2859–2867Google Scholar
  115. 115.
    Prchalová J, Kovařík F, Ševčík R, Čížková H, Rajchl A (2014) Characterization of mustard seeds and paste by DART ionization with time-of-flight mass spectrometry. J Mass Spectrom 49:811–818Google Scholar
  116. 116.
    Haapala M, Pól J, Saarela V, Arvola V, Kotiaho T, Ketola RA, Franssila S, Kauppila TJ, Kostiainen R (2007) Desorption atmospheric pressure photoionization. Anal Chem 79:7867–7872Google Scholar
  117. 117.
    Luosujärvi L, Arvola V, Haapala M, Pól J, Saarela V, Franssila S, Kotiaho T, Kostiainen R, Kauppila TJ (2008) Desorption and ionization mechanisms in desorption atmospheric pressure photoionization. Anal Chem 80:7460–7466Google Scholar
  118. 118.
    Suni NM, Lindfors P, Laine O, Östman P, Ojanperä I, Kotiaho T, Kauppila TJ, Kostiainen R (2011) Matrix effect in the analysis of drugs of abuse from urine with desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS) and desorption electrospray ionization-mass spectrometry (DESI-MS). Anal Chim Acta 699:73–80Google Scholar
  119. 119.
    Luosujärvi L, Kanerva S, Saarela V, Franssila S, Kostiainen R, Kotiaho T, Kauppila TJ (2010) Environmental and food analysis by desorption atmospheric pressure photoionization-mass spectrometry. Rapid Commun Mass Spectrom 24:1343–1350Google Scholar
  120. 120.
    Suni NM, Aalto H, Kauppila TJ, Kotiaho T, Kostiainen R (2012) Analysis of lipids with desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS) and desorption electrospray ionization-mass spectrometry (DESI-MS). J Mass Spectrom 47:611–619Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Clara Ibáñez
    • 1
  • Carolina Simó
    • 1
    Email author
  • Virginia García-Cañas
    • 1
  • Tanize Acunha
    • 1
    • 2
  • Alejandro Cifuentes
    • 1
  1. 1.Laboratory of FoodomicsCIAL, CSICMadridSpain
  2. 2.CAPES FoundationMinistry of Education of BrazilBrasíliaBrazil

Personalised recommendations