Skip to main content

Mass Spectrometry Methods for Food Safety/Detection of Toxins in Food

  • Conference paper
  • First Online:
Toxic Chemical and Biological Agents

Abstract

In this chapter, a brief overview of fundamentals in mass spectrometry (MS) and on methods for food safety and detection of toxins in food is described. It isĀ focused on ionization techniques, analyzers, high resolution MS, tandem MS and on different methodologies and approaches that modern mass spectrometry offers in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gross JH (2017) Mass spectrometry. A textbook, 3rd edn. Springer Verlag, Berlin/Heidelberg

    BookĀ  Google ScholarĀ 

  2. Cole RB (2010) Electrospray and MALDI mass spectrometry: fundamentals, instrumentation, practicalities, and biological applications, 2nd edn. Wiley, Hoboken

    BookĀ  Google ScholarĀ 

  3. Cifuentes A (2013) Foodomics: advanced mass spectrometry in modern food science and nutrition. Wiley, Hoboken

    BookĀ  Google ScholarĀ 

  4. Witczak A, Sikorski ZE (eds) (2017) Toxins and other harmful compounds in foods, 1st edn. CRC Press, Boca Raton

    Google ScholarĀ 

  5. Lā€™Homme B, Scholl G, Eppe G, Focant J-F (2015) Determination of PCDD/Fs and dioxin-like PCBs in food and feed using gas chromatography-triple quadrupole mass spectrometry. J Chromatogr A 1376:149ā€“158

    ArticleĀ  Google ScholarĀ 

  6. Melchert HU, Pabel E (2004) Reliable identification and quantification of trichothecenes and other mycotoxins by electron impact and chemical ionization-gas chromatographyā€“mass spectrometry, using an ion-trap system in the multiple mass spectrometry mode: candidate reference method for complex matrices. J Chromatogr A 1056:195ā€“199

    CASĀ  PubMedĀ  Google ScholarĀ 

  7. Barber M, Bordoli RS, Sedgwick RD, Tyler AN (1981) Fast atom bombardment of solids as an ion source in mass spectrometry. Nature 293:270ā€“275

    ArticleĀ  CASĀ  Google ScholarĀ 

  8. Ambient ionization mass spectrometry. New developments in mass spectrometry. (2014) Domin M, Cody R (eds). Royal Society of Chemistry

    Google ScholarĀ 

  9. Ifa DR, Wiseman JM, Song QY, Cooks RG (2007) Development of capabilities for imaging mass spectrometry under ambient conditions with desorption electrospray ionization (DESI). Int J Mass Spectrom 259:8ā€“15

    ArticleĀ  CASĀ  Google ScholarĀ 

  10. Cody RB, LaramĆ©e JA, Durst HD (2005) Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal Chem 77:2297ā€“2302

    ArticleĀ  CASĀ  Google ScholarĀ 

  11. Zhang Y, Ma XX, Zhang SC, Yang CD, Ouyang Z, Zhang XR (2009) Direct detection of explosives on solid surfaces by low temperature plasma desorption mass spectrometry. Analyst 134:176ā€“181

    ArticleĀ  CASĀ  Google ScholarĀ 

  12. Balog J, Szaniszlo T, Schaefer K-C, Denes J, Lopata A, Godorhazy L, Szalay D, Balogh L, Sasi-Szabo L, Toth M, Takats Z (2010) Identification of biological tissues by rapid evaporative ionization mass spectrometry. Anal Chem 82:7343ā€“7350

    ArticleĀ  CASĀ  Google ScholarĀ 

  13. Liu J, Wang H, Manicke NE, Lin J-M, Cooks RG, Ouyang Z (2010) Development, characterization, and application of paper spray ionization. Anal Chem 82:2463ā€“2471

    ArticleĀ  CASĀ  Google ScholarĀ 

  14. Huang M, Jhang S, Chan Y, Cheng S, Cheng C, Shiea J (2014) Electrospray laser desorption ionization mass spectrometry. In: Domin M, Cody R (eds) Ambient ionization mass spectrometry. New developments in mass spectrometry. Royal Society of Chemistry, pp 372ā€“388

    Google ScholarĀ 

  15. Vaclavik L, Zachariasova M, Hrbek V, Hajslova J (2010) Analysis of multiple mycotoxins in cereals under ambient conditions using direct analysis in real time (DART) ionization coupled to high resolution mass spectrometry. Talanta 82:1950ā€“1957

    ArticleĀ  CASĀ  Google ScholarĀ 

  16. Su H, Liu K-T, Chen B-H, Lin Y-P, Jiang Y-M, Tsai Y-H, Chang F-R, Shiea J, Lee C-W (2019) Rapid identification of herbal toxins using electrospray laser desorption ionization mass spectrometry for emergency care. J Food Drug Anal 27:415ā€“427

    ArticleĀ  CASĀ  Google ScholarĀ 

  17. Wang R, Yin Y, Zhu Z-J (2019) Advancing untargeted metabolomics using data-independent acquisition mass spectrometry technology. Anal Bioanal Chem 411:4349ā€“4357

    ArticleĀ  CASĀ  Google ScholarĀ 

  18. Fiorino GM, Fresch M, BrĆ¼mmer I, Losito I, Arlorio M, Brockmeyer J, Monaci L (2019) Mass spectrometry-based untargeted proteomics for the assessment of food authenticity: the case of farmed versus wild-type salmon. J AOAC Int 102:1339ā€“1345

    ArticleĀ  CASĀ  Google ScholarĀ 

  19. Wu AHB, Colby J (2016) High-resolution mass spectrometry for untargeted drug screening. In: Garg U (ed) Clinical applications of mass spectrometry in drug analysis. Methods in molecular biology, vol 1383. Humana Press, New York

    Google ScholarĀ 

  20. Plumb RS, Johnson KA, Rainville P, Smith BW, Wilson ID, Castro-Perez JM, Nicholson JK (2006) UPLC/MSE; a new approach for generating molecular fragment information for biomarker structure elucidation. Rapid Commun Mass Spectrom 20:1989ā€“1994

    ArticleĀ  CASĀ  Google ScholarĀ 

  21. Geiger T, Cox J, Mann M (2010) Proteomics on an orbitrap benchtop mass spectrometer using all-ion fragmentation. Mol Cell Proteomics 9:2252ā€“2261

    ArticleĀ  CASĀ  Google ScholarĀ 

  22. Naz S, Gallart-Ayala H, Reinke SN, Mathon C, Blankley R, Chaleckis R, Wheelock CE (2017) Development of a liquid chromatography-high resolution mass spectrometry metabolomics method with high specificity for metabolite identification using all ion fragmentation acquisition. Anal Chem 89:7933ā€“7942

    ArticleĀ  CASĀ  Google ScholarĀ 

  23. Kramer G, Moerland PD, Jeeninga RE, Vlietstra WJ, Ringrose JH, Byrman C, Berkhout B, Speijer D (2012) Proteomic analysis of HIVā€“T cell interaction: an update. Front Microbiol 3:240

    ArticleĀ  Google ScholarĀ 

  24. Gillet LC, Navarro P, Tate S, Rost H, Selevsek N, Reiter L, Bonner R, Aebersold R (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11:O111.016717

    Google ScholarĀ 

  25. Bonner R, Hopfgartner G (2019) SWATH data independent acquisition mass spectrometry for metabolomics. TrAC Trends Anal Chem 120:115278

    Google ScholarĀ 

  26. Zhang Y, Bilbao A, Bruderer T, Luban J, Strambio-De-Castillia C, Lisacek F, Hopfgartner G, Varesio E (2015) The use of variable Q1 isolation windows improves selectivity in LC-SWATH-MS acquisition. J Proteome Res 14:4359ā€“4371

    ArticleĀ  CASĀ  Google ScholarĀ 

  27. Ludwig C, Gillet L, Rosenberger G, Amon S, Collins BC, Aebersold R (2018) Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Mol Syst Biol 14:e8126

    ArticleĀ  Google ScholarĀ 

  28. Panchaud A, Scherl A, Shaffer SA, von Haller PD, Kulasekara HD, Miller SI, Goodlett DR (2011) PAcIFIC: how to dive deeper into the proteomics ocean. Anal Chem 81:6481ā€“6488

    ArticleĀ  Google ScholarĀ 

  29. Egertson JD, Kuehn A, Merrihew GE, Bateman NW, MacLean BX, Ting YS, Canterbury JD, Marsh DM, Kellmann M, Zabrouskov V, Wu CC, MacCoss MJ (2013) Multiplexed MS/MS for improved data-independent acquisition. Nat Methods 10:744ā€“746

    ArticleĀ  CASĀ  Google ScholarĀ 

  30. Peterson AC, Russell JD, Bailey DJ, Westphall MS, Coon JJ (2012) Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol Cell Proteomics 11:1475ā€“1488

    ArticleĀ  Google ScholarĀ 

  31. Hird SJ, Lau BP-Y, Schuhmacher R, Krska R (2014) Liquid chromatography-mass spectrometry for the determination of chemical contaminants in food. Trends Anal Chem 59:59ā€“72

    ArticleĀ  CASĀ  Google ScholarĀ 

  32. Tevell ƅberg A, Bjƶrnstad K, Hedeland M (2013) Mass spectrometric detection of protein-based toxins. In: Biosecurity and bioterrorism: biodefense strategy, practice, and science. Vol. 11(Suppl. 1): S215ā€“S226

    Google ScholarĀ 

  33. Duriez E, Armengaud J, Fenaillec F, Ezand E (2016) Mass spectrometry for the detection of bioterrorism agents: from environmental to clinical applications. J Mass Spectrom 51:183ā€“199

    ArticleĀ  CASĀ  Google ScholarĀ 

  34. Andjelkovic M, Tsilia V, Rajkovic A, De Cremer K, Van Loco J (2016) Application of LC-MS/MS MRM to determine Staphylococcal enterotoxins (SEB and SEA) in milk. Toxins 8:118

    ArticleĀ  Google ScholarĀ 

  35. Johnson RC, Kalb SR, Barr JR (2011) Toxin analysis using mass spectrometry. In: Budowle B, Schutzer SE, Breeze RG, Keim PS, Morse SA (eds) Microbial Forensics, 2nd edn. Academic Press, pp 405ā€“420

    Google ScholarĀ 

  36. Righetti L, Paglia G, Galaverna G, Dallā€™Asta C (2016) Recent advances and future challenges in modified mycotoxin analysis: why HRMS has become a key instrument in food contaminant research. Toxins 8:361

    ArticleĀ  Google ScholarĀ 

  37. Duracova M, Klimentova J, Myslivcova Fucikova A, Zidkova L, Sheshko V, Rehulkova H, Dresler J, Krocova Z (2019) Targeted mass spectrometry analysis of clostridium perfringens toxins. Toxins 11:177

    Google ScholarĀ 

  38. DuprĆ© M, Gilquin B, Fenaille F, Feraudet-Tarisse C, Dano J, Ferro M, Simon S, Junot C, Brun V, Becher F (2015) Multiplex quantification of protein toxins in human biofluids and food matrices using immunoextraction and high-resolution targeted mass spectrometry. Anal Chem 87:8473ā€“8480

    ArticleĀ  Google ScholarĀ 

  39. Parrilla VĆ”zquez P, Lozano A, Ferrer C, MartĆ­nez Bueno MJ, FernĆ”ndez-Alba AR (2018) Improvements in identification and quantitation of pesticide residues in food by LC-QTOF using sequential mass window acquisition (SWATHĀ®). Anal Methods 10:2821ā€“2833

    ArticleĀ  Google ScholarĀ 

  40. Gagez A-L, Bonnet A, Pineau P, Graber M (2017) Identification and quantification of domoic acid by UHPLC/QTOF tandem mass spectrometry, with simultaneous identification of non-target photodegradation products. Int J Environ Anal Chem 97:1192ā€“1205

    Google ScholarĀ 

  41. Kaufmann A (2012) The current role of high-resolution mass spectrometry in food analysis. Anal Bioanal Chem 403:1233ā€“1249

    ArticleĀ  CASĀ  Google ScholarĀ 

  42. Wong JW, Wang J, Chow W, Carlson R, Jia Z, Zhang K, Hayward DJ, Chang JS (2018) Perspectives on liquid chromatographyā€“high-resolution mass spectrometry for pesticide screening in foods. J Agric Food Chem 66:9573ā€“9581

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Giorgi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2020 Springer Nature B.V.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Giorgi, G. (2020). Mass Spectrometry Methods for Food Safety/Detection of Toxins in Food. In: Sindona, G., Banoub, J.H., Di Gioia, M.L. (eds) Toxic Chemical and Biological Agents. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-2041-8_3

Download citation

Publish with us

Policies and ethics