Skip to main content
Log in

Determination of triazine herbicides in fresh vegetables by dynamic microwave-assisted extraction coupled with homogeneous ionic liquid microextraction high performance liquid chromatography

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel extraction method, dynamic microwave-assisted extraction coupled with homogeneous ionic liquid microextraction, was developed for the determination of triazine herbicides, including desmetryn, terbumeton, propazine, terbuthylazine, dimethametryn, and dipropetryn in fresh vegetable samples by high performance liquid chromatography (HPLC). In the developed method, 120 μL of 1-butyl-3-methylimidazolium tetrafluoroborate ([C4MIM][BF4]) was added to 10 mL of aqueous solution containing 0.3 g of NaCl to obtained the extraction solvent. Six triazines could be extracted completely within 4 min by the present method. Then, [NH4][PF6] was added into the extract to form a water-insoluble ionic liquid [C4MIM][PF6] via a simple metathesis reaction, and the analytes were enriched into the ionic liquid phase. After centrifugation and dilution with acetonitrile, the resulting solution was analyzed directly by HPLC. The effects of some experimental parameters, including type and volume of ionic liquid, volume of extraction solvent, amount of ion-pairing agent [NH4][PF6], salt concentration, microwave power, and flow rate of extraction solvent on the extraction efficiency were investigated and optimized. Under the optimum experimental conditions, the linearity for determining the analytes was in the range of 2.50–250.00 μg kg−1, with the correlation coefficients ranging from 0.9989 to 0.9999. When the present method was applied to the analysis of vegetable samples, satisfactory recoveries were obtained in the range of 76.8 %–106.9 %, and relative standard deviations were lower than 9.8 %.

Extraction procedure of triazines from vegetable sample

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Battista M, Di Corcia A, Marchetti M (1989) Extraction and isolation of triazine herbicides from water and vegetables by a double trap tandem system. Anal Chem 61(9):935–939

    Article  CAS  Google Scholar 

  2. Hidalgo C, Sancho J (1997) New method for the rapid determination of triazine herbicides and some of their main metabolites in water by using coupled-column liquid chromatography and large volume injection. J Chromatogr A 778(1):171–181

    Google Scholar 

  3. Hernández F, Hidalgo C, Sancho JV, López FJ (1998) Coupled-column liquid chromatography applied to the trace-level determination of triazine herbicides and some of their metabolites in water samples. Anal Chem 70(15):3322–3328

    Article  Google Scholar 

  4. Hideji T, Hitomi T, Kazuo H (1986) Structure-toxicity relationship of monoketones. Toxicol Lett 30(1):13–17

    Article  Google Scholar 

  5. Hidalgo C, Sancho J, Hernández F (1997) Trace determination of triazine herbicides by means of coupled-column liquid chromatography and large volume injection. Anal Chim Acta 338(3):223–229

    Article  CAS  Google Scholar 

  6. Sabik H, Jeannot R (1998) Determination of organonitrogen pesticides in large volumes of surface water by liquid–liquid and solid-phase extraction using gas chromatography with nitrogen–phosphorus detection and liquid chromatography with atmospheric pressure chemical ionization mass spectrometry. J Chromatogr A 818(2):197–207

    Article  CAS  Google Scholar 

  7. Pinto GMF, Jardim ICS (2000) Use of solid-phase extraction and high-performance liquid chromatography for the determination of triazine residues in water: validation of the method. J Chromatogr A 869(1):463–469

    Article  CAS  Google Scholar 

  8. Psathaki M, Manoussaridou E, Stephanou EG (1994) Determination of organophosphorus and triazine pesticides in ground-and drinking water by solid-phase extraction and gas chromatography with nitrogen-phosphorus or mass spectrometric detection. J Chromatogr A 667(1):241–248

    Article  CAS  Google Scholar 

  9. Tian M, Cheng R, Ye J, Liu X, Jia Q (2014) Preparation and evaluation of ionic liquid-calixarene solid-phase microextraction fibres for the determination of triazines in fruit and vegetable samples. Food Chem 145:28–33

    Article  CAS  Google Scholar 

  10. Valor I, Perez M, Cortada C, Apraiz D, Moltó JC, Font G (2001) SPME of 52 pesticides and polychlorinated biphenyls: extraction efficiencies of the SPME coatings poly (dimethylsiloxane), polyacrylate, poly (dimethylsiloxane)‐divinylbenzene, carboxen‐poly (dimethylsiloxane), and carbowax‐divinylbenzene. J Sep Sci 24(1):39–48

    Article  CAS  Google Scholar 

  11. Frıas S, Rodrıguez M, Conde J, Pérez-Trujillo J (2003) Optimization of a solid-phase microextraction procedure for the determination of triazines in water with gas chromatography–mass spectrometry detection. J Chromatogr A 1007(1):127–135

    Article  Google Scholar 

  12. Lambropoulou DA, Albanis TA (2007) Liquid-phase micro-extraction techniques in pesticide residue analysis. J Biochem Biophys Methods 70(2):195–228

    Article  CAS  Google Scholar 

  13. Sanchez-Ortega A, Unceta N, Gómez-Caballero A, Sampedro M, Akesolo U, Goicolea M, Barrio R (2009) Sensitive determination of triazines in underground waters using stir bar sorptive extraction directly coupled to automated thermal desorption and gas chromatography–mass spectrometry. Anal Chim Acta 641(1):110–116

    Article  CAS  Google Scholar 

  14. Portugal F, Pinto ML, Pires J, Nogueira J (2010) Potentialities of polyurethane foams for trace level analysis of triazinic metabolites in water matrices by stir bar sorptive extraction. J Chromatogr A 1217(23):3707–3710

    Article  CAS  Google Scholar 

  15. Ye C, Zhou Q, Wang X (2007) Improved single-drop microextraction for high sensitive analysis. J Chromatogr A 1139(1):7–13

    Article  CAS  Google Scholar 

  16. Shen G, Lee HK (2002) Hollow fiber-protected liquid-phase microextraction of triazine herbicides. Anal Chem 74(3):648–654

    Article  CAS  Google Scholar 

  17. Peng J, Lü J, Hu X, Liu J, Jiang G (2007) Determination of atrazine, desethyl atrazine, and desisopropyl atrazine in environmental water samples using hollow fiber-protected liquid-phase microextraction and high performance liquid chromatography. Microchim Acta 158(1/2):181–186

    Article  CAS  Google Scholar 

  18. Vandecasteele K, Gaus I, Debreuck W, Walraevens K (2000) Identification and quantification of 77 pesticides in groundwater using solid phase coupled to liquid-liquid microextraction and reversed-phase liquid chromatography. Anal Chem 72(14):3093–3101

    Article  CAS  Google Scholar 

  19. Zhou Q, Zhang X, Xie G (2011) Preconcentration and determination of pyrethroid insecticides in water with ionic liquid dispersive liquid-phase microextraction in combination with high performance liquid chromatography. Analy Methods 3(2):356–361

    Article  CAS  Google Scholar 

  20. Rezaee M, Assadi Y, Milani Hosseini M-R, Aghaee E, Ahmadi F, Berijani S (2006) Determination of organic compounds in water using dispersive liquid–liquid microextraction. J Chromatogr A 1116(1):1–9

    Article  CAS  Google Scholar 

  21. Viñas P, Campillo N, López-García I, Hernández-Córdoba M (2014) Dispersive liquid–liquid microextraction in food analysis. A critical review. Anal Bioanal Chem 406(8):2067–2099

    Article  Google Scholar 

  22. Saraji M, Boroujeni MK (2014) Recent developments in dispersive liquid–liquid microextraction. Anal Bioanal Chem 406(8):2027–2066

    Article  CAS  Google Scholar 

  23. Nagaraju D, Huang S-D (2007) Determination of triazine herbicides in aqueous samples by dispersive liquid–liquid microextraction with gas chromatography–ion trap mass spectrometry. J Chromatogr A 1161(1):89–97

    Article  CAS  Google Scholar 

  24. Wang Y, You J, Ren R, Xiao Y, Gao S, Zhang H, Yu A (2010) Determination of triazines in honey by dispersive liquid–liquid microextraction high-performance liquid chromatography. J Chromatogr A 1217(26):4241–4246

    Article  CAS  Google Scholar 

  25. Sanagi MM, Abbas HH, Ibrahim WAW, Aboul-Enien HY (2012) Dispersive liquid–liquid microextraction method based on solidification of floating organic droplet for the determination of triazine herbicides in water and sugarcane samples. Food Chem 133(2):557–562

    Article  CAS  Google Scholar 

  26. Zhou Q, Pang L, Xie G, Xiao J, Bai H (2009) Determination of atrazine and simazine in environmental water samples by dispersive liquid–liquid microextraction with high performance liquid chromatography. Anal Sci 25(1):73–76

    Article  Google Scholar 

  27. Wang C, Ji S, Wu Q, Wu C, Wang Z (2011) Determination of triazine herbicides in environmental samples by dispersive liquid–liquid microextraction coupled with high performance liquid chromatography. J Chromatogr Sci 49(9):689–694

    Article  CAS  Google Scholar 

  28. Li S, Gao H, Zhang J, Li Y, Peng B, Zhou Z (2011) Determination of insecticides in water using in situ halide exchange reaction‐assisted ionic liquid dispersive liquid–liquid microextraction followed by high‐performance liquid chromatography. J Sep Sci 34(22):3178–3185

    Article  CAS  Google Scholar 

  29. Mateus NM, Branco LC, Lourenço NM, Afonso CA (2003) Synthesis and properties of tetra-alkyl-dimethylguanidinium salts as a potential new generation of ionic liquids. Green Chem 5(3):347–352

    Article  CAS  Google Scholar 

  30. Hallett JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem Rev 111(5):3508–3576

    Article  CAS  Google Scholar 

  31. Zhou Q, Pang L, Xiao J (2011) Ultratrace determination of carbamate pesticides in water samples by temperature controlled ionic liquid dispersive liquid phase microextraction combined with high performance liquid phase chromatography. Microchim Acta 173(3/4):477–483

    Article  CAS  Google Scholar 

  32. Xiao J, Cheng J, Guo F, Hu H, Peng S, Zhang M, Cheng M (2012) Ultrasound-assisted headspace ionic-liquid microextraction of polycyclic aromatic hydrocarbons at elevated temperatures. Microchim Acta 177(3/4):465–471

    Article  CAS  Google Scholar 

  33. Zhang L, Wang Z, Li N, Yu A, Zhang H (2014) Ionic liquid-based foam flotation followed by solid phase extraction to determine triazine herbicides in corn. Talanta 122:43–50

    Article  CAS  Google Scholar 

  34. Wang Y, You J, Bao C, Zhang H, Yu A, Yu Y (2010) Determination of triazines by ultrasonic‐assisted ionic liquid microextraction coupled with high performance liquid chromatography. Chin J Chem 28(5):785–790

    Article  CAS  Google Scholar 

  35. Anderson JL, Armstrong DW (2005) Immobilized ionic liquids as high-selectivity/high-temperature/high-stability gas chromatography stationary phases. Anal Chem 77(19):6453–6462

    Article  CAS  Google Scholar 

  36. He L, Luo X, Xie H, Wang C, Jiang X, Lu K (2009) Ionic liquid-based dispersive liquid–liquid microextraction followed high-performance liquid chromatography for the determination of organophosphorus pesticides in water sample. Anal Chim Acta 655(1):52–59

    Article  CAS  Google Scholar 

  37. Zhou Q, Bai H, Xie G, Xiao J (2008) Trace determination of organophosphorus pesticides in environmental samples by temperature-controlled ionic liquid dispersive liquid-phase microextraction. J Chromatogr A 1188(2):148–153

    Article  CAS  Google Scholar 

  38. Liu Y, Zhao E, Zhu W, Gao H, Zhou Z (2009) Determination of four heterocyclic insecticides by ionic liquid dispersive liquid–liquid microextraction in water samples. J Chromatogr A 1216(6):885–891

    Article  CAS  Google Scholar 

  39. Pena M, Casais M, Mejuto M, Cela R (2009) Development of an ionic liquid based dispersive liquid–liquid microextraction method for the analysis of polycyclic aromatic hydrocarbons in water samples. J Chromatogr A 1216(36):6356–6364

    Article  CAS  Google Scholar 

  40. Saraji M, Tansazan N (2009) Application of dispersive liquid–liquid microextraction for the determination of phenylurea herbicides in water samples by HPLC‐diode array detection. J Sep Sci 32(23/24):4186–4192

    Article  CAS  Google Scholar 

  41. Baghdadi M, Shemirani F (2009) In situ solvent formation microextraction based on ionic liquids: a novel sample preparation technique for determination of inorganic species in saline solutions. Anal Chim Acta 634(2):186–191

    Article  CAS  Google Scholar 

  42. Yao C, Anderson JL (2009) Dispersive liquid–liquid microextraction using an in situ metathesis reaction to form an ionic liquid extraction phase for the preconcentration of aromatic compounds from water. Anal Bioanal Chem 395(5):1491–1502

    Article  CAS  Google Scholar 

  43. Zhang J, Liang Z, Li S, Li Y, Peng B, Zhou W, Gao H (2012) In-situ metathesis reaction combined with ultrasound-assisted ionic liquid dispersive liquid–liquid microextraction method for the determination of phenylurea pesticides in water samples. Talanta 98:145–151

    Article  CAS  Google Scholar 

  44. López-Darias J, Pino V, Ayala JH, Afonso AM (2011) In-situ ionic liquid-dispersive liquid–liquid microextraction method to determine endocrine disrupting phenols in seawaters and industrial effluents. Microchim Acta 174(3/4):213–222

    Article  Google Scholar 

  45. Zhong Q, Su P, Zhang Y, Wang R, Yang Y (2012) In-situ ionic liquid-based microwave-assisted dispersive liquid–liquid microextraction of triazine herbicides. Microchim Acta 178(3/4):341–347

    Article  CAS  Google Scholar 

  46. Xu X, Su R, Zhao X, Liu Z, Zhang Y, Li D, Li X, Zhang H, Wang Z (2011) Ionic liquid-based microwave-assisted dispersive liquid–liquid microextraction and derivatization of sulfonamides in river water, honey, milk, and animal plasma. Anal Chim Acta 707(1):92–99

    Article  CAS  Google Scholar 

  47. Xu X, Su R, Zhao X, Liu Z, Li D, Li X, Zhang H, Wang Z (2011) Determination of formaldehyde in beverages using microwave-assisted derivatization and ionic liquid-based dispersive liquid–liquid microextraction followed by high-performance liquid chromatography. Talanta 85(5):2632–2638

    Article  CAS  Google Scholar 

  48. Hu E, Cheng H (2013) Rapid extraction and determination of atrazine and its degradation products from microporous mineral sorbents using microwave-assisted solvent extraction followed by ultra-HPLC-MS/MS. Microchim Acta 180(7/8):703–710

    Article  CAS  Google Scholar 

  49. Speltini A, Sturini M, Maraschi F, Profumo A, Albini A (2012) Microwave-assisted extraction and determination of enrofloxacin and danofloxacin photo-transformation products in soil. Anal Bioanal Chem 404(5):1565–1569

    Article  CAS  Google Scholar 

  50. Chen S, Zhang H (2013) Development of a microwave-assisted -extraction-based method for the determination of aflatoxins B1, G1, B2, and G2 in grains and grain products. Anal Bioanal Chem 405(5):1623–1630

    Article  CAS  Google Scholar 

  51. Chen L, Jin H, Ding L, Zhang H, Li J, Qu C, Zhang H (2008) Dynamic microwave-assisted extraction of flavonoids from<i>Herba Epimedii</i> Sep Purif Technol 59(1):50–57

    Article  CAS  Google Scholar 

  52. Ericsson M, Colmsjö A (2003) Dynamic microwave-assisted extraction coupled on-line with solid-phase extraction and large-volume injection gas chromatography: determination of organophosphate esters in air samples. Anal Chem 75(7):1713–1719

    Article  CAS  Google Scholar 

  53. Li N, Jin H, Nian L, Wang Y, Lei L, Zhang R, Zhang H, Yu Y (2013) Pneumatic nebulization gas–solid extraction of triazine herbicides in vegetable. J Chromatogr A 1304:18–27

    Article  CAS  Google Scholar 

  54. Gao S, You J, Zheng X, Wang Y, Ren R, Zhang R, Bai Y, Zhang H (2010) Determination of phenylurea and triazine herbicides in milk by microwave assisted ionic liquid microextraction high-performance liquid chromatography. Talanta 82(4):1371–1377

    Article  CAS  Google Scholar 

  55. Bi W, Tian M, Row KH (2011) Ultrasonication-assisted extraction and preconcentration of medicinal products from herb by ionic liquids. Talanta 85(1):701–706

    Article  CAS  Google Scholar 

  56. Babić S, Horvat AJ, Mutavdžić Pavlović D, Kaštelan-Macan M (2007) Determination of p<i>K</i>< sub>a</sub>values of active pharmaceutical ingredients. TrAC Trends Anal Chem 26(11):1043–1061

    Article  Google Scholar 

  57. Zhou Q, Bai H, Xie G, Xiao J (2008) Temperature-controlled ionic liquid dispersive liquid phase microextraction. J Chromatogry A 1177(1):43–49

    Article  CAS  Google Scholar 

  58. Chen L, Ding L, Jin H, Song D, Zhang H, Li J, Zhang K, Wang Y, Zhang H (2007) The determination of organochlorine pesticides based on dynamic microwave-assisted extraction coupled with on-line solid-phase extraction of high-performance liquid chromatography. Anal Chim Acta 589(2):239–246

    Article  CAS  Google Scholar 

  59. Gao S, You J, Wang Y, Zhang R, Zhang H (2012) On-line continuous sampling dynamic microwave-assisted extraction coupled with high performance liquid chromatographic separation for the determination of lignans in Wuweizi and naphthoquinones in Zicao. J Chromatogr B 887:35–42

    Article  Google Scholar 

  60. Xu X, Zhao X, Zhang Y, Li D, Su R, Yang Q, Li X, Zhang H, Zhang H, Wang Z (2011) Microwave‐accelerated derivatization prior to GC‐MS determination of sex hormones. J Sep Sci 34(12):1455–1462

    Article  CAS  Google Scholar 

  61. Carabias-Martínez R, Rodríguez-Gonzalo E, Miranda-Cruz E, Domínguez-Álvarez J, Hernández-Méndez J (2007) Sensitive determination of herbicides in food samples by nonaqueous CE using pressurized liquid extraction. Electrophoresis 28(20):3606–3616

    Article  Google Scholar 

  62. Wen Y, Chen L, Li J, Ma Y, Xu S, Zhang Z, Niu Z, Choo J (2012) Molecularly imprinted matrix solid‐phase dispersion coupled to micellar electrokinetic chromatography for simultaneous determination of triazines in soil, fruit, and vegetable samples. Electrophoresis 33(15):2454–2463

    Article  CAS  Google Scholar 

  63. Zhang L, Yu R, Wang Z, Li N, Zhang H, Yu A (2014) Determination of triazine herbicides in vegetables by ionic liquid foam floatation solid phase extraction high performance liquid chromatography. J Chromatogr B 953:132–137

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (no. 20905030) and the China Postdoctoral Science Foundation (no. 20090461039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziming Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 514 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Hu, M., Li, Z. et al. Determination of triazine herbicides in fresh vegetables by dynamic microwave-assisted extraction coupled with homogeneous ionic liquid microextraction high performance liquid chromatography. Anal Bioanal Chem 407, 1753–1762 (2015). https://doi.org/10.1007/s00216-014-8393-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8393-4

Keywords

Navigation