Skip to main content
Log in

Quantitative evaluation of peptide-extraction methods by HPLC–triple-quad MS–MS

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this study, the efficiency of five peptide-extraction methods—acetonitrile (ACN) precipitation, ultrafiltration, C18 solid-phase extraction (SPE), dispersed SPE with mesoporous carbon CMK-3, and mesoporous silica MCM-41—was quantitatively investigated. With 28 tryptic peptides as target analytes, these methods were evaluated on the basis of recovery and reproducibility by using high-performance liquid chromatography–triple-quad tandem mass spectrometry in selected-reaction-monitoring mode. Because of the distinct extraction mechanisms of the methods, their preferences for extracting peptides of different properties were revealed to be quite different, usually depending on the pI values or hydrophobicity of peptides. When target peptides were spiked in bovine serum albumin (BSA) solution, the extraction efficiency of all the methods except ACN precipitation changed significantly. The binding of BSA with target peptides and nonspecific adsorption on adsorbents were believed to be the ways through which BSA affected the extraction behavior. When spiked in plasma, the performance of all five methods deteriorated substantially, with the number of peptides having recoveries exceeding 70 % being 15 for ACN precipitation, and none for the other methods. Finally, the methods were evaluated in terms of the number of identified peptides for extraction of endogenous plasma peptides. Only ultrafiltration and CMK-3 dispersed SPE performed differently from the quantitative results with target peptides, and the wider distribution of the properties of endogenous peptides was believed to be the main reason.

Distribution of the recoveries of target peptides after treatment by the five peptide-extraction methods

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DSPE:

Dispersed solid-phase extraction

FA:

Formic acid

MW:

Molecular weight

pI:

Isoelectric point

QQQ:

Triple quadrupole

References

  1. Anderson NL (2002) The Human Plasma Proteome: History, Character, and Diagnostic Prospects. Mol Cell Proteomics 1(11):845–867

    Article  CAS  Google Scholar 

  2. Liotta LA, Ferrari M, Petricoin E (2003) Written in blood. Nature 425(6961):905–905

    Article  CAS  Google Scholar 

  3. Petricoin EF, Belluco C, Araujo RP, Liotta LA (2006) The blood peptidome: a higher dimension of information content for cancer biomarker discovery. Nat Rev Cancer 6(12):961–967

    Article  CAS  Google Scholar 

  4. Diamandis EP (2006) Peptidomics for cancer diagnosis: present and future. J Proteome Res 5(9):2079–2082

    Article  CAS  Google Scholar 

  5. Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422(6928):198–207

    Article  CAS  Google Scholar 

  6. Petricoin EF, Ardekani AM, Hitt BA, Levine PJ, Fusaro VA, Steinberg SM, Mills GB, Simone C, Fishman DA, Kohn EC, Liotta LA (2002) Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359(9306):572–577

    Article  CAS  Google Scholar 

  7. Sadek PC, Carr PW, Bowers LD, Haddad LC (1986) A radiochemical study of irreversible adsorption of proteins on reversed-phase chromatographic packing materials. Anal Biochem 153(2):359–371

    Article  CAS  Google Scholar 

  8. Gillette MA, Mani DR, Carr SA (2005) Place of pattern in proteomic biomarker discovery. J Proteome Res 4(4):1143–1154

    Article  CAS  Google Scholar 

  9. Chen J, Anderson M, Misek DE, Simeone DM, Lubman DM (2007) Characterization of apolipoprotein and apolipoprotein precursors in pancreatic cancer serum samples via two-dimensional liquid chromatography and mass spectrometry. J Chromatogr A 1162(2):117–125

    Article  CAS  Google Scholar 

  10. Chertov O, Biragyn A, Kwak LW, Simpson JT, Boronina T, Hoang VM, Prieto DA, Conrads TP, Veenstra TD, Fisher RJ (2004) Organic solvent extraction of proteins and peptides from serum as an effective sample preparation for detection and identification of biomarkers by mass spectrometry. Proteomics 4(4):1195–1203

    Article  CAS  Google Scholar 

  11. Kay R, Barton C, Ratcliffe L, Matharoo-Ball B, Brown P, Roberts J, Teale P, Creaser C (2008) Enrichment of low molecular weight serum proteins using acetonitrile precipitation for mass spectrometry based proteomic analysis. Rapid Commun Mass Spectrom 22(20):3255–3260

    Article  CAS  Google Scholar 

  12. Kawashima Y, Fukutomi T, Tomonaga T, Takahashi H, Nomura F, Maeda T, Kodera Y (2010) High-yield peptide-extraction method for the discovery of subnanomolar biomarkers from small serum samples. J Proteome Res 9(4):1694–1705

    Article  CAS  Google Scholar 

  13. Hu LH, Ye ML, Zou HF (2009) Recent advances in mass spectrometry-based peptidome analysis. Expert Rev Proteomic 6(4):433–447

    Article  CAS  Google Scholar 

  14. Tirumalai RS (2003) Characterization of the Low molecular weight human serum proteome. Mol Cell Proteomics 2(10):1096–1103

    Article  CAS  Google Scholar 

  15. Tammen H, Schulte I, Hess R, Menzel C, Kellmann M, Mohring T, Schulz-Knappe P (2005) Peptidomic analysis of human blood specimens: Comparison between plasma specimens and serum by differential peptide display. Proteomics 5(13):3414–3422

    Article  CAS  Google Scholar 

  16. Orvisky E, Drake SK, Martin BM, Abdel-Hamid M, Ressom HW, Varghese RS, An Y, Saha D, Hortin GL, Loffredo CA, Goldman R (2006) Enrichment of low molecular weight fraction of serum for MS analysis of peptides associated with hepatocellular carcinoma. Proteomics 6(9):2895–2902

    Article  CAS  Google Scholar 

  17. Zheng X, Baker H, Hancock WS (2006) Analysis of the low molecular weight serum peptidome using ultrafiltration and a hybrid ion trap-Fourier transform mass spectrometer. J Chromatogr A 1120(1–2):173–184

    Article  CAS  Google Scholar 

  18. Greening DW, Simpson RJ (2010) A centrifugal ultrafiltration strategy for isolating the low-molecular weight (≤25 K) component of human plasma proteome. J Proteomics 73(3):637–648

    Article  CAS  Google Scholar 

  19. Aristoteli LP, Molloy MP, Baker MS (2007) Evaluation of endogenous plasma peptide extraction methods for mass spectrometric biomarker discovery. J Proteome Res 6(2):571–581

    Article  CAS  Google Scholar 

  20. Johnson KL, Mason CJ, Muddiman DC, Eckel JE (2004) Analysis of the low molecular weight fraction of serum by LC-dual ESI-FT-ICR mass spectrometry: precision of retention time, mass, and ion abundance. Anal Chem 76(17):5097–5103

    Article  CAS  Google Scholar 

  21. Koomen JM, Li DH, Xiao LC, Liu TC, Coombes KR, Abbruzzese J, Kobayashi R (2005) Direct tandem mass spectrometry reveals limitations in protein profiling experiments for plasma biomarker discovery. J Proteome Res 4(3):972–981

    Article  CAS  Google Scholar 

  22. Mouton-Barbosa E, Roux-Dalvai F, Bouyssie D, Berger F, Schmidt E, Righetti PG, Guerrier L, Boschetti E, Burlet-Schiltz O, Monsarrat B, de Peredo AG (2010) In-depth exploration of cerebrospinal fluid by combining peptide ligand library treatment and label-free protein quantification. Mol Cell Proteomics 9(5):1006–1021

    Article  CAS  Google Scholar 

  23. Tian R, Zhang H, Ye M, Jiang X, Hu L, Li X, Bao X, Zou H (2007) Selective Extraction of Peptides from Human Plasma by Highly Ordered Mesoporous Silica Particles for Peptidome Analysis. Angew Chem 119(6):980–983

    Article  Google Scholar 

  24. Qin H, Gao P, Wang F, Zhao L, Zhu J, Wang A, Zhang T, Ra W, Zou H (2011) Highly efficient extraction of serum peptides by ordered mesoporous carbon. Angew Chem Int Ed 50(51):12218–12221

    Article  CAS  Google Scholar 

  25. Capriotti AL, Caruso G, Cavaliere C, Piovesana S, Samperi R, Laganà A (2012) Comparison of three different enrichment strategies for serum low molecular weight protein identification using shotgun proteomics approach. Anal Chim Acta 740:58–65

    Article  CAS  Google Scholar 

  26. De Bock M, de Seny D, Meuwis M-A, Servais A-C, Minh TQ, Closset J, Chapelle J-P, Louis E, Malaise M, Merville M-P (2010) Comparison of three methods for fractionation and enrichment of low molecular weight proteins for SELDI-TOF-MS differential analysis. Talanta 82(1):245–254

    Article  Google Scholar 

  27. Tucholska M, Scozzaro S, Williams D, Ackloo S, Lock C, Siu KWM, Evans KR, Marshall JG (2007) Endogenous peptides from biophysical and biochemical fractionation of serum analyzed by matrix-assisted laser desorption/ionization and electrospray ionization hybrid quadrupole time-of-flight. Anal Biochem 370(2):228–245

    Article  CAS  Google Scholar 

  28. Biosa G, Addis MF, Tanca A, Pisanu S, Roggio T, Uzzau S, Pagnozzi D (2011) Comparison of blood serum peptide enrichment methods by Tricine SDS-PAGE and mass spectrometry. J Proteomics 75(1):93–99

    Article  CAS  Google Scholar 

  29. Potier DN, Griffiths JR, Unwin RD, Walker MJ, Carrick E, Willamson AJK, Whetton AD (2012) An assessment of peptide enrichment methods employing mTRAQ quantification approaches. Anal Chem 84(13):5604–5610

    Article  CAS  Google Scholar 

  30. Picotti P, Aebersold R, Domon B (2007) The implications of proteolytic background for shotgun proteomics. Mol Cell Proteomics 6(9):1589–1598

    Article  CAS  Google Scholar 

  31. Fan R, Huh S, Yan R, Arnold J, Yang P (2008) Gated proton transport in aligned mesoporous silica films. NatMater 7(4):303–307

    CAS  Google Scholar 

  32. Hartmann M (2005) Ordered mesoporous materials for bioadsorption and biocatalysis. Chem Mater 17(18):4577–4593

    Article  CAS  Google Scholar 

  33. Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Hecht R, Schlenk F, Fischer D, Kiouptsi K, Reinhardt C, Landfester K, Schild H, Maskos M, Knauer SK, Stauber RH (2013) Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol 8(10):772–781

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support by the National Nature Science Foundation of P. R. China (grant Nos. 21005080, 21275144, 21475131, 91317313, 21235005, 21321064) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dapeng Wu or Yafeng Guan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 3.46 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Wu, D., Wu, Q. et al. Quantitative evaluation of peptide-extraction methods by HPLC–triple-quad MS–MS. Anal Bioanal Chem 407, 1595–1605 (2015). https://doi.org/10.1007/s00216-014-8389-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8389-0

Keywords

Navigation